

Koala Habitat Rehabilitation Monitoring Report 6th Monitoring Period – Yarrabilba

EPBC Number:	2013/6791
Project Name:	Yarrabilba
Proponent's ACN:	103 578 436
Proposed Action:	To construct the Yarrabilba residential development and associated infrastructure approximately 40 kilometres south east of Brisbane, Qld (see EPBC Act referral 3013/6791 and request to vary proposal dated 5 August 2013)
Prepared for:	Lendlease
Prepared by:	Dr M.N. Runkovski, J. Pittard, B. Steinrücken, M. Brett, K. Richardt, K. Leopold
Date:	15 September 2020

Project							
Title:		Habitat Rehabilitation Management Report – Koala Habitat Area 6 th Monitoring Period					
Authors:		Dr M.N. Runkovski, J. Pittard, B. Steinrücken, M. Brett, K. Richardt, K. Leopold					
File refere	nce:	NCO11-0011_Ya	rrabilba				
Project lea	ader:	Kieran Richardt					
Phone:		+(61) 7 5576 556	8, +(61) 4 1541 340	8			
Email:		info@natura-pac	cific.com				
Client:		Lendlease					
Client con	tact:	Rob Ball					
Revision	History						
Version:	Purpose:	Issued by:	Date	Reviewer:	Date:		
0.1	Peer review	K. Leopold	24/11/2020	Dr M.N. Runkovski	25/11/2020		
1.0	Quality assurance	Dr M.N. Runkovski	25/11/2020	D. Coburn	25/11/2020		

Natura Pacific – Document Control Sheet

Declaration of Accuracy

In making this declaration, I am aware that section 491 of the *Environment Protection and Biodiversity Conservation Act 1999* (Cth) (*EPBC Act*) makes it an offence in certain circumstances to knowingly provide false or misleading information or documents to specified persons who are known to be performing a duty or carrying out a function under the *EPBC Act* or the *Environment Protection and Biodiversity Conservation Regulations 2000* (Cth). The offence is punishable on conviction by imprisonment or a fine, or both. I am authorised to bind the approval holder to this declaration and that I have no knowledge of that authorisation being revoked at the time of making this declaration.

Signed

Full name (please print)

Robert Mervyn Ball

Organisation (please print) Lendlease Communities (Yarrabilba) Pty Ltd

Date

<u>2/ 10 / 20</u>20

DISCLAIMER

This report and any files associated with it contain information which is confidential and may also be legally privileged.

This document is and shall remain the property of Natura Pacific Pty Ltd (t/a Natura Consulting). It is for the exclusive use of the client and its use is entirely limited to the specific as was agreed to under the signing of the contract between the providers (Natura Pacific Pty Ltd) and the recipient. Unauthorised copying or use of this document in any form whatsoever is prohibited.

All the information contained within this report is provided in good faith in the belief that no information or recommendations made are misleading. All comments and opinions provided in this report have been based upon a limited survey of the study sites and/or on information supplied by the client, their agents and/or third parties.

All the assessments of site biology, ecology, geomorphology and the extent and nature of and to this study site is limited to the terms of reference stated within this report; and by the limited timeframe of study. Therefore the results presented herein cannot be considered absolute without additional long-term follow-up studies.

Acceptance of this document denotes acceptance of the above terms

Contents

1	Exe	cutive summary	6
2	Intro	oduction	8
	2.1	Background	8
	2.2	Objectives	8
3	Reh	abilitation areas	.10
	3.1	Purpose of habitat rehabilitation	10
	3.2	Habitat Rehabilitation Units (HRU)	.10
	3.3	Crossing Rehabilitation Units (CRU)	.10
	3.4	Pre-clearing Regional Ecosystems Rehabilitation Units	.14
4	Reh	abilitation performance indicators	.15
	4.1	Performance indicators	15
	4.2	Contingency measures and corrective actions	16
		4.2.1 Meeting benchmarks	16
		4.2.2 As constructed data	.16
5	Mor	nitoring methodology	.21
	5.1	Sites	21
	5.2	Photo point monitoring	21
	5.3	Transect and quadrat monitoring	23
6	Res	ults	24
	6.1	Photo-point monitoring	24
	6.2	Transect and quadrat monitoring	35
		6.2.1 Species richness	35
		6.2.2 Tree canopy cover and height (T1)	.36
		6.2.3 Small tree cover and height (T2-T3)	.37
		6.2.4 Shrub cover and height (S1)	.38
		6.2.5 Ground cover (G1)	.38
		6.2.6 Weed incursion	.39
	6.3	Normalised Difference Vegetation Index (NDVI) monitoring	42
7	Disc	cussion	43
8	Bib	liography	50

List of Figures

Figure 1	Yarrabilba site location	9
Figure 2	Rehabilitation units for koala habitat areas	11
Figure 3	Koala Habitat Rehabilitation Units, habitat monitoring permanent transect locations a	nd
	NDVI sampling areas	22

List of Tables

Table 1	Habitat Rehabilitation Units (HRU) within the corridor network
Table 2	Road and infrastructure crossing rehabilitation units (CRU) traversing Habitat
	Rehabilitation Units (HRU)
Table 3	Summary of pre-clearing Regional Ecosystems within Offset Rehabilitation Units and
	Crossing Rehabilitation Units
Table 4	Reference, Interim & Final Benchmark vegetation structure for each pre-clearing RE
	detailed for rehabilitation units (HRU) & crossing rehabilitation units (CRU)17
Table 5	Example reference height ranges used for classifying RE vegetation to respective strata
	layers

Table 6	Data collected at monitoring sites
Table 7	Photo monitoring images
Table 8	6 th Monitoring round sites with canopy absent for current and two previous monitoring rounds. Orange highlight indicates sites not surveyed in current monitoring rounds
Table 9	Sites containing <i>Pinus elliotti</i> in the small tree layer this monitoring round and previous two monitoring rounds
Table 10	6 th Monitoring period species richness, average canopy height within the canopy (T1), sub-canopy (T2-T3) and shrub layer (S1) and Foliage Projected Cover within the canopy (T1), sub-canopy (T2-T3), shrub layer (S1) and ground layer (G1). Orange highlight indicates sites that were not surveyed in this monitoring round due to restricted access at time of sampling
Table 11	6 th Monitoring period benchmark values for species richness, canopy height within the canopy (T1), sub-canopy (T2-T3) and shrub layer (S1) and cover within the canopy (T1), sub-canopy (T2-T3), shrub layer (S1) and ground layer (G1) as well as indicative weed cover benchmarks. Orange indicates sites that were not surveyed this round due to restricted access at time of sampling

1 Executive summary

Natura Pacific has developed this *Habitat Rehabilitation Monitoring Report* for the 6th monitoring period for rehabilitation within the Yarrabilba Koala Habitat Areas as prescribed in the *Habitat Rehabilitation and Management Plan* (Natura Consulting, March 2015) and the Approval Conditions set out under the *Environmental Protection and Biodiversity Conservation Act 1999* originally dated 13 November 2014 and varied 8 December 2017.

The intent of this report is to provide 6th monitoring period information to direct the rehabilitation works associated with koala habitat within the 'koala habitat areas to be protected and managed' on the Yarrabilba site. These areas are to be rehabilitated, ensuring that koala habitat outside of the offset sites areas are protected and managed. This report provides 6th monitoring period data for the rehabilitation of these areas, from the 59 sites monitored (see later). This is two sites less than the previous monitoring period, as three sites were inaccessible due to restricted access. Data was collected for site 14, which was not surveyed in the 5th monitoring round. Each monitoring site is located within a Koala Habitat Rehabilitation Unit (HRU1 to HRU31) including Road Crossing Rehabilitation Units (CRU2, CRU4 to CRU7 and CRU9 to CRU14), with the pre-clearing Regional Ecosystem, management type and corridor type tabulated.

Each rehabilitation unit is to be rehabilitated to a vegetation structure and species composition that is in line with that of the appropriate pre-clearing Regional Ecosystem (RE). This is derived from the vegetation structure and species composition of the appropriate pre-clearing RE. The Final Benchmark for rehabilitation is derived from the definition of remnant vegetation under the *Vegetation Management Act 1999* (canopy is 70% of the height, 50% of the cover and similar species composition of the appropriate pre-clearing RE). Interim Benchmarks are also provided whereby an assessment at regular intervals will be made on the progress of the rehabilitation / revegetation efforts towards achieving this plan's outcomes. For Interim Benchmark years 1 to 10, vegetation structure has been quantified from a cumulative growth curve (CGC). The reference benchmark, Interim Benchmarks and Final Benchmarks have been tabulated for each RE, with the relevant rehabilitation unit also identified. A species list for each RE, including dominant species within each stratum, has also been provided.

Provision of contingency measures and corrective actions will account for instances of when Interim Benchmarks are not being met. 'As constructed' data and surveyed boundaries will also be provided for each rehabilitation unit to test and demonstrate compliance with the requirement to maintain and protect existing koala habitat.

The monitoring methodology that is applied has been detailed, where a minimum of two monitoring sites per rehabilitation unit will be surveyed, in order to document and assess rehabilitation through time. All final locations of the monitoring sites (currently 62 in total) have been mapped. Monitoring includes photo point monitoring along with transect and quadrat monitoring to monitor changes in species richness, percentage foliage cover for the ground layer, shrub and canopy layers, canopy height, and weed prevalence.

An assessment of site species richness and structure was undertaken to determine the current condition against the benchline values. A number of sites already meet the Final Benchmark for some individual parameters. Rehabilitation efforts need to ensure that the full suite of species represented in the pre-RE condition for each rehabilitation unit are planted where possible, with a strong focus on eradicating exotic weed infestations including *Pinus elliottii*, particularly in those areas where highest weed cover has been recorded.

A total of 28 sites (47%) meet a benchmark for canopy tree cover (same as 5th monitoring period), 28 sites (47%) met a benchmark for canopy tree height (down from 32 sites (54%) in 5th monitoring period), 58 sites (98%) meet a benchmark for small tree cover (2% less than 5th monitoring period), 58 sites (98%) meet a benchmark for small tree height (2% less than 5th monitoring period). For shrub cover, 52 sites (88%) met a benchmark (down from 55 sites (90%) in 5th monitoring period). For shrub height, 56 sites (95%) met a benchmark (down from 59 sites (96%) in 5th monitoring period). For ground cover, 57 sites (97%) meet a benchmark (down 1% from 5th monitoring period), and 23 sites (38%) meet the <5% cover benchmark for weed cover of the ground-layer (down from 27 sites (44%) 5^h monitoring period).

Overall, this assessment supports findings of the 4th and 5th monitoring period - that rehabilitation works need to continue prioritising weed control of the ground-layer in order to provide opportunity for native species richness and shrub cover to increase proportionally. Furthermore, strategic rehabilitation of the ground, shrub and tree layers will ensure that weeds are outcompeted and shaded out over time. A number of sites do not yet meet a benchmark for tree and shrub FPC, and so these sites will need to be prioritised for rehabilitation within the next 6 months to ensure that they meet the IMO-3 year benchmark at minimum. However, management actions are proving successful, with a number of 5th monitoring priority sites showing improvement and being replaced by new priority management areas. Management of *Pinus elliotti* has shown good results and is recommended to continue through strategic removal from lower strata.

Based on the results of this monitoring period, there are 22 sites currently regarded as the poorest in terms of height and cover and meeting low benchmarks (IMO-1, IMO-2) or no benchmarks at all, in four or more categories across canopy, shrub and ground-layers with % weed cover also taken into consideration. Of these, there are 7 top priority rehabilitation units most urgently requiring management actions for improving multiple benchmarks and weed cover, including HRU20 (site 81), HRU18 (site 87, same as 5th monitoring), HRU23 (site 89, same as 5th monitoring), CRU7 (site 140, same as 5th monitoring), HRU17 (site 95, same as 5th monitoring), HRU29 (site 141) and HRU21 (site146) (in order of highest to lowest priority). A further 3 rehabilitation units are recommended for weed removal as they are included in the top 5 sites with highest weed cover or contain *P. elliotti* to be removed, including site 1 (HRU1), 3 (HRU3) and 17 (HRU5). In summary, therefore, the following 10 rehabilitation units require the most urgent management attention: HRU20, HRU18, HRU23, CRU7, HRU17, HRU29, HRU21, HRU11, HRU3 and HRU17.

2 Introduction

2.1 Background

The Yarrabilba development site is located on the eastern side of Waterford - Tamborine Road and to the south of Logan Village (refer to Figure 1). It is bounded by rural residential areas to the north, Plunkett Road to the south and the Plunkett Conservation Park to the east. The site consists of approximately 2,200 ha, of which 1,931 ha is controlled by Lendlease Communities (Yarrabilba) Pty Ltd. The land has been historically used for pine forestry, a military training camp in WWII and for live stock grazing, when first cleared. Yarrabilba is predominately vegetated with areas of regrowth native vegetation, regenerating pines and exotic grasslands. Some limited areas of native remnant and regrowth vegetation exist but they are mostly confined to creeks, drainage channels and wetlands.

The site is currently in the early stages of development with the growth of Yarrabilba projected to span approximately 30 years. The long-term master-planned development incorporates an extensive network of dedicated open space (in excess of 25% of the site). A significant component of the open space is dedicated to the conservation of habitat for koalas (*Phascolarctos cinereus*).

Habitat rehabilitation is intended to improve koala habitat quality within the site in order to significantly increase the site's koala carrying capacity in the medium to long term. In addition, the configuration of key elements of the open space system (Fauna Corridor, Greenspace Corridor and Environmental Protection Zone) will enhance the site's contribution to koala movement opportunities within the context of larger areas of koala habitat to the east and west of the site (Austecology 2012). Under the development of Yarrabilba, all existing fragments of remnant vegetation which have value for koalas will be retained (approximately 5.4% of the total site area) (Austecology 2012). The rehabilitation of the Fauna Corridor, Greenspace Corridor and Environmental Protection Zone will significantly expand on these values by providing additional koala habitat (Natura Consulting 2011).

Natura Pacific has developed this *Habitat Rehabilitation Monitoring Report* – 6^{th} *Monitoring Period within Koala Habitat Areas* prior to the commencement of habitat rehabilitation in Koala Habitat Areas in the Yarrabilba Residential Development. This report provides data for the 6^{th} monitoring period for the rehabilitation of Koala Habitat Areas within the development site, with 59 of 62 sites monitored. As noted in previous monitoring reports, Slash pine (Pinus elliottii) control has already occurred throughout >90% of the entire development site.

2.2 Objectives

The intent of this report is to provide 6th monitoring period data with which to assess the rehabilitation of koala habitat within the 'koala habitat to be protected and managed'.

This report is consistent with the *Habitat Rehabilitation and Management Plan* (Natura Consulting 2015), *Offset Management Plan* (Austecology 2015), *Koala Management Plan* (Austecology 2012) and *Fauna Corridor Infrastructure Master Plan* (Natura Consulting 2011). Specifically the objectives of this report are to:

- describe the rehabilitation areas and clear and concise rehabilitation outcomes and performance indicators against which achievement of the rehabilitation will be measured
- identify contingency measures and appropriate corrective actions that will be undertaken if the performance indicators or outcomes are not being met
- outline the monitoring methodology including monitoring site locations
- present the 6th monitoring period results
- assess whether rehabilitation is on-track to meet the next interim performance indicator

Figure 1 Yarrabilba site location

3 Rehabilitation areas

3.1 Purpose of habitat rehabilitation

Koala habitat rehabilitation is to be undertaken within *Existing Assessable Koala Habitat to be protected and managed* within Fauna Corridors, Greenspace Corridors and Environmental Protection Zones. This totals an area of 754,657 m² (75.5 ha) within *Existing Assessable Koala Habitat* areas outside of Offset areas (195 ha), comprising a combined area of 2,736,428 m² (273.6 ha).

The koala habitat rehabilitation area has been divided into Offset Rehabilitation and Habitat Rehabilitation Units and Crossing Rehabilitation Units. This report is relevant to the Habitat Rehabilitation Units and Crossing Rehabilitation Units.

3.2 Habitat Rehabilitation Units (HRU)

Koala habitat rehabilitation is to occur within Habitat Rehabilitation Units as shown in Figure 2. Each rehabilitation unit (HRU1 to HRU31) is a mapped polygon, where the polygon boundaries are the mapped Pre-Clearing Regional Ecosystems. The Regional Ecosystem (RE) code applicable to each unit was determined by overlapping Pre-Clearing Regional Ecosystem mapping (Queensland Government 2015b) with maps of *Existing Assessable Koala Habitat – to be protected and managed* within the Fauna Corridors, Greenspace Corridors and Environmental Protection Zones.

The following table (Table 1) presents a summary of rehabilitation unit attributes, including the:

- area of the rehabilitation unit in square metres
- corridor within which the rehabilitation unit is located
- RE code for pre-clearing vegetation within the rehabilitation unit and the landzone / geology of the rehabilitation unit

It is noted that the minimum rehabilitation unit size is $\sim 2,500 \text{ m}^2$ to reflect the mapping limitation of the Pre-Clearing Regional Ecosystems mapping dataset (Queensland Government 2015a). However, there are two rehabilitation units with areas of slightly less than 2,500 m², which were retained due to their immediate proximity to adjacent rehabilitation units.

3.3 Crossing Rehabilitation Units (CRU)

Rehabilitation and monitoring are also being undertaken where road and infrastructure traverses a Habitat Rehabilitation Unit. These areas are known as Crossing Rehabilitation Units. Crossing Rehabilitation Units have been identified by overlaying the proposed internal road network with the Pre-Clearing Regional Ecosystem mapping (Queensland Government 2015a) and Koala Habitat Rehabilitation Unit mapping. Each Crossing Rehabilitation Unit (CRU1 to CRU15) is a mapped polygon. It is noted that these locations are indicative and may change with the final alignment of roads. Table 2 presents a summary of the Crossing Rehabilitation Units, which are subject to rehabilitation actions outlined in this report.

Figure 2Rehabilitation units for koala habitat areas

Yarrabilba Habitat Rehabilitation Monitoring Report Koala Habitat Area – 6th Monitoring Period

Rehab. Unit	Area (m ²)	Corridor Type	RE Code(s)	Landzone / Geology
HRU1	31,875	Greenspace Corridor	12.9-10.4/12.9-10.12	Fine grained sedimentary rocks – Undulating country on fine grained sedimentary rocks
HRU2	2,947	Greenspace Corridor	12.9-10.4/12.9-10.12/12.9-10.2	Fine grained sedimentary rocks – Undulating country on fine grained sedimentary rocks
HRU3	116,097	Greenspace Corridor	12.3.11/12.3.7	Recent quaternary alluvial systems – Alluvial river and creek flats
HRU4	47,894	Fauna Corridor Greenspace Corridor	12.3.11/12.3.6/12.3.7	Recent quaternary alluvial systems – Alluvial river and creek flats
HRU5	6,788	Greenspace Corridor	12.9-10.17/12.9-10.2	Recent quaternary alluvial systems – Alluvial river and creek flats
HRU6	26,102	Greenspace Corridor	12.3.11/12.3.6/12.3.7	Recent quaternary alluvial systems – Alluvial river and creek flats
HRU7	1,684	Fauna Corridor	12.3.11/12.3.6/12.3.7	Recent quaternary alluvial systems – Alluvial river and creek flats
HRU8	5,206	Fauna Corridor	12.3.11/12.3.6/12.3.7	Recent quaternary alluvial systems – Alluvial river and creek flats
HRU9	2,935	Greenspace Corridor	12.3.11/12.3.6/12.3.7	Recent quaternary alluvial systems – Alluvial river and creek flats
HRU10	13,511	Greenspace Corridor	12.9-10.17/12.9-10.2	Fine grained sedimentary rocks – Undulating country on fine grained sedimentary rocks
HRU11	19,528	Greenspace Corridor	12.3.11/12.3.6/12.3.7	Recent quaternary alluvial systems – Alluvial river and creek flats
HRU12	3,128	Greenspace Corridor	12.9-10.4/12.9-10.12/12.9-10.2	Fine grained sedimentary rocks – Undulating country on fine grained sedimentary rocks
HRU13	42,093	Greenspace Corridor	12.3.11/12.3.6/12.3.7	Recent quaternary alluvial systems – Alluvial river and creek flats
HRU14	910	Greenspace Corridor	12.3.11/12.3.6/12.3.7	Recent quaternary alluvial systems – Alluvial river and creek flats
HRU15	62,944	Fauna Corridor Greenspace Corridor	12.3.11/12.3.6/12.3.7	Recent quaternary alluvial systems – Alluvial river and creek flats
HRU16	29,486	Fauna Corridor Greenspace Corridor	12.3.11	Recent quaternary alluvial systems – Alluvial river and creek flats
HRU17	19,638	Greenspace Corridor	12.9-10.17/12.9-10.2	Fine grained sedimentary rocks – Undulating country on fine grained sedimentary rocks
HRU18	19,604	Fauna Corridor Greenspace Corridor	12.3.11/12.3.6/12.3.7	Recent quaternary alluvial systems – Alluvial river and creek flats
HRU19	29,070	Fauna Corridor	12.3.11/12.3.6/12.3.7	Recent quaternary alluvial systems – Alluvial river and creek flats
HRU20	3,784	Fauna Corridor	12.9-10.17/12.9-10.2	Fine grained sedimentary rocks – Undulating country on fine grained sedimentary rocks
HRU21	5,688	Greenspace Corridor	12.9-10.17/12.9-10.2	Fine grained sedimentary rocks – Undulating country on fine grained sedimentary rocks
HRU22	14,158	Greenspace Corridor	12.3.11/12.3.6/12.3.7	Recent quaternary alluvial systems – Alluvial river and creek flats

Table 1 Habitat Rehabilitation Units (HRU) within the corridor network

Rehab. Unit	Area (m ²)	Corridor Type	RE Code(s)	Landzone / Geology
HRU23	15,932	Greenspace Corridor	12.9-10.17/12.9-10.2	Fine grained sedimentary rocks – Undulating country on fine grained sedimentary rocks
HRU24	38,783	Environmental Protection	12.9-10.17/12.9-10.19	Fine grained sedimentary rocks – Undulating country on fine grained sedimentary rocks
HRU25	22,618	Environmental Protection	12.9-10.17/12.9-10.2/12.9-10.19	Fine grained sedimentary rocks – Undulating country on fine grained sedimentary rocks
HRU26	2,818	Environmental Protection	12.9-10.17/12.9-10.19	Fine grained sedimentary rocks – Undulating country on fine grained sedimentary rocks
HRU27	15,379	Greenspace Corridor	12.9-10.17/12.9-10.2	Fine grained sedimentary rocks – Undulating country on fine grained sedimentary rocks
HRU28	99,585	Fauna Corridor Greenspace Corridor	12.9-10.17/12.9-10.2	Fine grained sedimentary rocks – Undulating country on fine grained sedimentary rocks
HRU29	27,237	Greenspace Corridor	12.9-10.17/12.9-10.2	Fine grained sedimentary rocks – Undulating country on fine grained sedimentary rocks
HRU30	15,378	Greenspace Corridor	12.9-10.17/12.9-10.2	Fine grained sedimentary rocks – Undulating country on fine grained sedimentary rocks
HRU31	11,857	Greenspace Corridor	12.9-10.17/12.9-10.2	Fine grained sedimentary rocks – Undulating country on fine grained sedimentary rocks
Total	754,657			

 Table 2
 Road and infrastructure crossing rehabilitation units (CRU) traversing Habitat Rehabilitation Units (HRU)

Crossing Rehab. Unit	Area (m ²)	Traversing ORU	Corridor Type	RE Code(s)	Landzone / Geology
CRU1	1,369	HRU15	Greenspace Corridor	12.3.11/12.3.6/12.3.7	Fine grained sedimentary rocks – Undulating country on fine grained sedimentary rocks
CRU2	3,670	HRU15	Fauna Corridor Greenspace Corridor	12.3.11/12.3.6/12.3.7	Fine grained sedimentary rocks – Undulating country on fine grained sedimentary rocks
CRU4	3,347	HRU16	Greenspace Corridor	12.11.3	Metamorphic rocks - hills and lowlands on metamorphic rocks
CRU5	6,013	HRU28	Fauna Corridor	12.9-10.17/12.9-10.2	Fine grained sedimentary rocks – Undulating country on fine grained sedimentary rocks
CRU6	731	HRU29	Greenspace Corridor	12.9-10.17/12.9-10.2	Fine grained sedimentary rocks – Undulating country on fine grained sedimentary rocks
CRU7	10,045	HRU28	Greenspace Corridor	12.9-10.17/12.9-10.2	Fine grained sedimentary rocks – Undulating country on fine grained sedimentary rocks
CRU9	5,542	HRU22, HRU23	Greenspace Corridor	12.9-10.17/12.9-10.2	Fine grained sedimentary rocks – Undulating country on fine grained sedimentary rocks
CRU10	3,555	HRU19	Fauna Corridor	12.3.11/12.3.6/12.3.7	Fine grained sedimentary rocks – Undulating country on fine grained sedimentary rocks
CRU12	1,775	HRU4	Greenspace Corridor	12.3.11/12.3.6/12.3.7	Fine grained sedimentary rocks – Undulating country on fine grained sedimentary rocks
CRU13	3,766	HRU3	Greenspace Corridor	12.3.11//12.3.7	Fine grained sedimentary rocks – Undulating country on fine grained sedimentary rocks
CRU14	3,496	HRU3	Greenspace Corridor	12.3.11//12.3.7	Fine grained sedimentary rocks – Undulating country on fine grained sedimentary rocks
Total	43,309				

3.4 Pre-clearing Regional Ecosystems Rehabilitation Units

A short description of the pre-clearing Regional Ecosystems identified in the Koala Habitat Rehabilitation Units and Crossing Rehabilitation Units is provided in Table 3.

Table 3	Summary	of	pre-clearing	Regional	Ecosystems	within	Offset	Rehabilitation	Units	and
Crossing F	Rehabilitatic	n L	Jnits							

RE Code	RE short description (extract from Qld Herbarium) RE Description Database	Vegetation Management Act class	Biodiversity status
12.3.6	<i>Eucalyptus tereticornis, Casuarina cunninghamiana</i> subsp. <i>cunninghamiana +/- Melaleuca</i> spp. fringing woodland	Least concern	No concern at present
12.3.7	<i>Melaleuca quinquenervia +/- Eucalyptus tereticornis, Lophostemon suaveolens</i> open forest on coastal alluvial plains	Least concern	No concern at present
12.3.11	Eucalyptus tereticornis +/- Eucalyptus siderophloia, Corymbia intermedia open forest on alluvial plains	Of concern	Of concern
12.9-10.2	Corymbia citriodora subsp. variegata +/- Eucalyptus crebra open forest on sedimentary rocks	Least concern	No concern at present
12.9-10.4	Eucalyptus racemosa subsp. racemosa woodland on sedimentary rocks	Least concern	No concern at present
12.9-10.12	Eucalyptus seeana, Corymbia intermedia, Angophora leiocarpa woodland on sedimentary rocks	Endangered	Endangered
12.9-10.17	Eucalyptus acmenoides, E. major, E. siderophloia +/- Corymbia citriodora subsp. variegata woodland on sedimentary rocks	Least concern	No concern at present
12.9-10.19	<i>Eucalyptus fibrosa</i> subsp. <i>fibrosa</i> woodland on sedimentary rocks	Least concern	No concern at present
12.11.3	<i>Eucalyptus siderophloia, E. propinqua +/- E. microcorys,</i> <i>Lophostemon confertus, Corymbia intermedia, E.</i> <i>acmenoides</i> open forest on metamorphics +/- interbedded volcanics	Least concern	No concern at present

Source: QLD Government 2015a

4 Rehabilitation performance indicators

In accordance with the *EPBC Act 1999* decision notice, the *Koala Habitat Rehabilitation Management Plan* (Natura Consulting 2015) was formulated reflecting the onsite rehabilitation requirements of Fauna and Green Space Corridors, Regional Ecosystems, drainage lines and post development fauna movement pathways within Offset Areas on the site. This plan identifies koala habitat rehabilitation benchmarks and determines restoration actions to meet these benchmarks.

Each rehabilitation unit is to be rehabilitated to a vegetation structure and species composition that is in line with that of the appropriate pre-clearing RE (identified in Table 5 and Table 6). The reference benchmark for rehabilitation of each rehabilitation unit is derived from the vegetation structure and species composition of the appropriate pre-clearing Regional Ecosystem (RE) (refer to Table 5 and Table 6). These benchmarks quantify average canopy cover, shrub cover, ground cover, species richness and average height of the canopy and have been sourced from the Queensland Herbarium (Queensland Government 2015b). These technical descriptions are a compilation of data from multiple sites for canopy cover, shrub cover, and average stem density for each strata, groundcover and average species richness (Queensland Government 2015b). Through establishing these benchmarks, a reasonable comparison can be made between the floristic composition and vegetation structure of a given rehabilitation unit and the appropriate pre-clearing RE.

4.1 **Performance indicators**

The Final Benchmark for rehabilitation is derived from the definition of remnant vegetation under the *Vegetation Management Act 1999.* Vegetation can be mapped as remnant vegetation and associated essential habitat for koalas if the canopy is 70% of the height, 50% of the cover and similar species composition of the appropriate pre-clearing RE (Queensland Government 2015b). Therefore, the Final Benchmark for rehabilitation is 70% of the reference benchmark cover (for canopy, shrub and ground-layer) and 50% of the reference benchmark height (for canopy and shrub layer) of the appropriate RE.

Six rehabilitation performance indicators were selected:

- 1. average canopy cover
- 2. average height of canopy
- 3. dominant canopy species
- 4. average shrub cover
- 5. average groundcover
- 6. species richness
- 7. weed cover

Weed cover needs to be considered for rehabilitation benchmarks for this site, particularly in the canopy where numerous exotic pine trees exist. Throughout the life of the development a weed cover of \leq 5% is to be maintained.

The reference and Final Benchmark vegetation structure and species composition for each of the preclearing REs identified within the mapped rehabilitation units is identified in Table 5 and Table 6 respectively. Note that exotic species identified in Table 6 are to assist with identification purposes only and are to be controlled and managed, not planted or assisted.

Rehabilitation units are to be managed and restored until they reach the Final Benchmark condition as identified in Table 4 and Table 5, along with the objectives of the Habitat Rehabilitation and Management Plan. The objectives of this plan are long term and are likely to require more than 15 years to be achieved, within each rehabilitation unit, after implementation is commenced.

PO Box 2959, Burleigh BC, QLD 4220 Australia Tel: +61 (0)7 55 765 568 Mob: +61(0)415 413 408 info@natura-pacific.com www.natura-pacific.com

Interim Benchmarks are also provided whereby an assessment at regular intervals can be made on the progress of the rehabilitation / revegetation efforts towards achieving this plan's outcomes. Given this, adaptive management approaches can also be employed to redirect restoration approaches, in the event that Interim Benchmarks are not being met. Table 5 provides a summary of the timeframe to achieve the Interim and Final Benchmarks.

For Interim Benchmark years 1 to 10, vegetation structure has been quantified from a cumulative growth curve (CGC), which for biological organisms, including trees and shrubs, is sigmoidal (Brack and Wood 1996). As the reference benchmarks applied for this report are at the Regional Ecosystem level, and site data and long term tree and shrub growth curves are not available for Yarrabilba, we have derived general growth curves for each Regional Ecosystem. This is based on a sigmoidal growth curve, the average reference benchmark height of the stratum, the minimum height at which regrowth vegetation is considered to be of equivalent height as the RE (50% of reference benchmark height), and the average height of tubestock (20 cm) that is predominately used for revegetation in southeast Queensland.

The Final Benchmark at year 15 is 70% of the reference benchmark cover (for canopy, shrub and ground-layer) and 50% of the reference benchmark height (for canopy and shrub layer) of the appropriate pre-clearing RE. See Appendix A for species composition of Final Benchmark Regional Ecosystems.

4.2 Contingency measures and corrective actions

4.2.1 Meeting benchmarks

During the course of monitoring, if Interim Benchmarks are not being met, the timeframes to achieve the Final Benchmarks will be reviewed and extended, whereby Lendlease will continue to undertake rehabilitation works with continued monitoring until the Final Benchmarks are met. The review of the success of meeting Interim Benchmarks will be undertaken at each monitoring event and reported on. Where the extension of rehabilitation works is required for particular Rehabilitation Units, discussions will be undertaken with the Department of Environment, to ensure that any additional requirements are also highlighted and addressed.

4.2.2 As constructed data

Constructed data and surveyed boundaries will be provided for each Rehabilitation Unit, within three months of completion of earthworks. This will be undertaken to test and demonstrate compliance within the offset area (195 ha) requirement.

Table 4 Reference, Interim & Final Benchmark vegetation structure for each pre-clearing RE detailed for rehabilitation units (HRU) & crossing rehabilitation units (CRU)

Dencimary			5				···· ·			/	
RE Code	Name	VMA Status	Biodiversity			Habitat Reh	abilitation Unit			Crossing Reh	abilitation Unit
12.3.6	Melaleuca quinquenervia +/- Eucalyptus tereticornis,	Least concern	No concern at present	HRU4, HRU	6, HRU7, HRU8, ŀ	HRU9, HRU11, H HRU15, HRU18, H	IRU13, HRU14, HRU19, HRU22				
	Lophostemon suaveolens open forest on coastal alluvial plains			Average Canopy Cover (%)	Average Canopy Height (m)	Average T2- T3 Canopy Cover (%)	Average T2- T3 Canopy Height (m)	Average Shrub Cover (%)	Average Shrub Height (m)	Average Ground cover (%)	Species Richness (av. +/- SD)
		Interim Bend	chmark by 1 year	10.0	1.5			1.5	0.5	6.0	
		Interim Bench	nmark by 2 years	14.0	3.0			2.0	0.8	10.0	
		16.0	4.0			2.5	1.2	15.0			
		22.0	6.0			3.0	1.4	20.0			
		Interim Benchr	mark by 10 years	28.0	9.2			4.0	1.5	25.0	
		Final Benchm	ark by 15 years	30.5	10.7			4.5	1.6	29.2	-
	Referen	ce Benchmark (P	Pre-Clearing RE)	60.9	15.3			8.9	2.3	58.4	33.3 +/- 10.5
1237	5.7 Eucalyptus tereticornis, Casuarina cunninghamiana Least concern No concern at present		HRU3, HRU4, HRU6, HRU7, HRU8, HRU9, HRU11, HRU13, HRU14, HRU15, HRU18, HRU19, HRU22								
12.0.7	Casuarina cunninghamiana	Least concern	No concern at present	HRU3, HR	J4, HRU6, HRU7 HRU14, H	, HRU8, HRU9, H HRU15, HRU18,	IRU11, HRU13, HRU19, HRU22				
12.0.1	Eucaryptus tereticornis, Casuarina cunninghamiana subsp. cunninghamiana +/- Melaleuca spp. fringing woodland	Least concern	No concern at present	Average Canopy Cover (%)	J4, HRU6, HRU7 HRU14, F Average Canopy Height (m)	, HRU8, HRU9, H HRU15, HRU18, Average T2- T3 Canopy Cover (%)	IRU11, HRU13, HRU19, HRU22 Average T2- T3 Canopy Height (m)	Average Shrub Cover (%)	Average Shrub Height (m)	Average Ground cover (%)	Species Richness (av. +/- SD)
	Eucaryptus tereticornis, Casuarina cunninghamiana subsp. cunninghamiana +/- Melaleuca spp. fringing woodland	Least concern	No concern at present	Average Canopy Cover (%) 5.5	J4, HRU6, HRU7 HRU14, F Average Canopy Height (m)	, HRU8, HRU9, H HRU15, HRU18, I Average T2- T3 Canopy Cover (%) 2.0	IRU11, HRU13, HRU19, HRU22 Average T2- T3 Canopy Height (m)	Average Shrub Cover (%) 2.5	Average Shrub Height (m) 0.5	Average Ground cover (%) 6.0	Species Richness (av. +/- SD)
	Eucaryptus tereticornis, Casuarina cunninghamiana subsp. cunninghamiana +/- Melaleuca spp. fringing woodland	Least concern	No concern at present	Average Canopy Cover (%) 5.5 6.0	J4, HRU6, HRU7 HRU14, F Average Canopy Height (m) 1.6 2.9	, HRU8, HRU9, H HRU15, HRU18, Average T2- T3 Canopy Cover (%) 2.0 3.0	IRU11, HRU13, HRU19, HRU22 Average T2- T3 Canopy Height (m) 0.8 2.7	Average Shrub Cover (%) 2.5 3.0	Average Shrub Height (m) 0.5 0.8	Average Ground cover (%) 6.0 7.0	Species Richness (av. +/- SD)
	Eucaryptus tereticornis, Casuarina cunninghamiana subsp. cunninghamiana +/- Melaleuca spp. fringing woodland	Least concern Interim Bench Interim Bench	No concern at present chmark by 1 year nmark by 2 years nmark by 3 years	HRU3, HR Average Canopy Cover (%) 5.5 6.0 7.0	J4, HRU6, HRU7 HRU14, F Average Canopy Height (m) 1.6 2.9 4.1	, HRU8, HRU9, H HRU15, HRU18, Average T2- T3 Canopy Cover (%) 2.0 3.0 4.0	IRU11, HRU13, HRU19, HRU22 Average T2- T3 Canopy Height (m) 0.8 2.7 3.7	Average Shrub Cover (%) 2.5 3.0 3.5	Average Shrub Height (m) 0.5 0.8 1.2	Average Ground cover (%) 6.0 7.0 8.0	Species Richness (av. +/- SD)
	Eucaryptus tereticornis, Casuarina cunninghamiana subsp. cunninghamiana +/- Melaleuca spp. fringing woodland	Interim Bench Interim Bench Interim Bench Interim Bench	No concern at present	Average Canopy Cover (%) 5.5 6.0 7.0 9.0	J4, HRU6, HRU7 HRU14, F Average Canopy Height (m) 1.6 2.9 4.1 6.2	, HRU8, HRU9, H HRU15, HRU18, Average T2- T3 Canopy Cover (%) 2.0 3.0 4.0 5.9	IRU11, HRU13, HRU19, HRU22 Average T2- T3 Canopy Height (m) 0.8 2.7 3.7 5.2	Average Shrub Cover (%) 2.5 3.0 3.5 4.0	Average Shrub Height (m) 0.5 0.8 1.2 1.4	Average Ground cover (%) 6.0 7.0 8.0 10.0	Species Richness (av. +/- SD)
	Eucaryptus tereticornis, Casuarina cunninghamiana subsp. cunninghamiana +/- Melaleuca spp. fringing woodland	Least concern Interim Bench Interim Bench Interim Bench Interim Bench	No concern at present chmark by 1 year mark by 2 years mark by 3 years mark by 5 years mark by 10 years	HRU3, HR Average Canopy Cover (%) 5.5 6.0 7.0 9.0 12.0	J4, HRU6, HRU7 HRU14, F Average Canopy Height (m) 1.6 2.9 4.1 6.2 10.1	, HRU8, HRU9, H HRU15, HRU18, Average T2- T3 Canopy Cover (%) 2.0 3.0 4.0 5.9 9.3	HRU11, HRU13, HRU19, HRU22 Average T2- T3 Canopy Height (m) 0.8 2.7 3.7 5.2 7.3	Average Shrub Cover (%) 2.5 3.0 3.5 4.0 6.0	Average Shrub Height (m) 0.5 0.8 0.8 1.2 1.4 1.4	Average Ground cover (%) 6.0 7.0 8.0 10.0 12.0	Species Richness (av. +/- SD)
	Eucaryptus tereticornis, Casuarina cunninghamiana subsp. cunninghamiana +/- Melaleuca spp. fringing woodland	Interim Bench Interim Bench Interim Bench Interim Bench Interim Benchr Final Benchm	No concern at present chmark by 1 year nmark by 2 years nmark by 3 years nmark by 5 years mark by 10 years mark by 10 years	HRU3, HR Average Canopy Cover (%) 5.5 6.0 7.0 9.0 12.0 13.3	J4, HRU6, HRU7 HRU14, F Average Canopy Height (m) 1.6 2.9 4.1 6.2 10.1 13.6	, HRU8, HRU9, H HRU15, HRU18, Average T2- T3 Canopy Cover (%) 2.0 3.0 4.0 5.9 9.3 11.5	HRU11, HRU13, HRU19, HRU22 Average T2- T3 Canopy Height (m) 0.8 2.7 3.7 5.2 7.3 8.2	Average Shrub Cover (%) 2.5 3.0 3.5 4.0 6.0 6.6	Average Shrub Height (m) 0.5 0.8 1.2 1.4 1.4 1.5 1.6	Average Ground cover (%) 6.0 7.0 8.0 10.0 12.0 14.4	Species Richness (av. +/- SD)
	Eucaryptus tereticornis, Casuarina cunninghamiana subsp. cunninghamiana +/- Melaleuca spp. fringing woodland Referen	Least concern Interim Bench Interim Bench Interim Bench Interim Benchr Final Benchm Ce Benchmark (P	No concern at present chmark by 1 year mark by 2 years mark by 3 years mark by 5 years mark by 10 years mark by 15 years park by 15 years	HRU3, HR Average Canopy Cover (%) 5.5 6.0 7.0 9.0 12.0 13.3 26.6	J4, HRU6, HRU7 HRU14, F Average Canopy Height (m) 1.6 2.9 4.1 6.2 10.1 13.6 19.4	, HRU8, HRU9, H HRU15, HRU18, H Average T2- T3 Canopy Cover (%) 2.0 3.0 4.0 5.9 9.3 11.5 15.3	HRU11, HRU13, HRU19, HRU22 Average T2- T3 Canopy Height (m) 0.8 2.7 3.7 5.2 7.3 8.2 9.0	Average Shrub Cover (%) 2.5 3.0 3.5 4.0 6.0 6.6 13.2	Average Shrub Height (m) 0.5 0.8 0.8 1.2 1.4 1.5 1.6 2.3	Average Ground cover (%) 6.0 7.0 8.0 10.0 12.0 14.4 28.7	Species Richness (av. +/- SD) - 52.8 +/- 7.5

Benchmark	Condition (where rehabilitation u	nits are treated in	ndividually, at lea	st 70% of height	t and 50% of cov	er values to be a	ttained within fi	rst 15 years of c	ommencement o	f rehabilitation w	vorks)
RE Code	Name	VMA Status	Biodiversity			Habitat Reh	abilitation Unit			Crossing Reh	abilitation Unit
	Eucalyptus siderophloia,				HRU14,	HRU15, HRU16, I	HRU18, HRU19				
	forest on alluvial			Average Canopy Cover (%)	Average Canopy Height (m)	Average T2- T3 Canopy Cover (%)	Average T2- T3 Canopy Height (m)	Average Shrub Cover (%)	Average Shrub Height (m)	Average Ground cover (%)	Species Richness (av. +/- SD)
		Interim Bend	chmark by 1 year	7.0	1.6	2.0	0.8	2.0	0.4	1.5	
		Interim Bench	nmark by 2 years	10.0	3.0	3.0	2.8	4.0	0.7	2.0	
		Interim Bench	nmark by 3 years	12.0	4.2	4.2	3.8	5.0	1.1	3.0	
		Interim Bench	nmark by 5 years	18.0	6.4	6.4	5.5	7.0	1.3	4.5	
		Interim Benchr	mark by 10 years	22.0	10.7	10.7	8.2	9.0	1.5	7.0	
		Final Benchm	nark by 15 years	25.6	16.7	13.9	9.6	10.9	1.9	8.5	-
	Reference	Pre-Clearing RE)	51.1	23.8	23.9	11.3	21.7	2.7	17	40.6 +/- 8.5	
12.9-10.2	Corymbia citriodora subsp. variegata +/- Eucalyptus crebra	Least concern	No concern at present	HRU2,	HRU5, HRU10, H HRU23, HRU27,	IRU12, HRU17, H HRU28, HRU29, I	IRU20, HRU21, HRU30, HRU31			CRU	5, CRU6, CRU9
	open forest on sedimentary rocks			Average Canopy Cover (%)	Average Canopy Height (m)	Average T2- T3 Canopy Cover (%)	Average T2- T3 Canopy Height (m)	Average Shrub Cover (%)	Average Shrub Height (m)	Average Ground cover (%)	Species Richness (av. +/- SD)
		Interim Bend	chmark by 1 year	6.0	1.6	2.0	0.8	6.0	0.4	6.0	3.0
		Interim Bench	nmark by 2 years	10.0	2.9	2.9	2.8	6.5	0.7	7.0	4.0
		Interim Bench	nmark by 3 years	12.0	4.2	4.0	3.8	7.0	1.1	12.0	5.0
		Interim Bench	nmark by 5 years	18.0	6.3	6.0	5.3	8.5	1.3	18.0	7.0
		Interim Benchr	mark by 10 years	22.0	10.5	9.6	7.7	11.4	1.5	22.0	9.0
		Final Benchm	nark by 15 years	26.8	15.5	11.9	8.9	15.1	1.8	23.6	10.8
	Reference	ce Benchmark (P	Pre-Clearing RE)	53.5	22.2	16.5	10.1	21.6	2.5	47.2	21.6
12.9-10.17	Eucalyptus acmenoides, Eucalyptus major, Eucalyptus siderophloia +/- Corymbia	HRU5, HRU5, HRU25, HRU2	HRU10, HRU17, H HRU26, HRU27, Average	IRU20, HRU21, H HRU28, HRU29, I Average T2-	IRU23, HRU24, HRU30, HRU31 Average T2-	Average	Average	CRU5, CRU6, CRU7, CRU9			
	<i>citriodora subsp. variegata</i> woodland on sedimentary			Canopy Cover	Canopy Height	T3 Canopy	T3 Canopy Height	Shrub Cover (%)	Shrub Height (m)	Ground cover	Richness (av. +/- SD)

Benchmark	Inchmark Condition (where rehabilitation units are treated individually, at least 70% of height and 50% of cover values to be attained within first 15 years of commencement of rehabilitation works)											
RE Code	Name	VMA Status	Biodiversity			Habitat Reh	abilitation Unit			Crossing Reh	abilitation Unit	
	rocks			(%)	(m)	Cover (%)	(m)			(%)		
		Interim Bend	hmark by 1 year	6.0	1.6	2.0	0.8	6.0	0.6	10.0		
		Interim Bench	nmark by 2 years	10.0	3.0	3.0	2.8	7.0	1.0	20.0		
		Interim Bench	nmark by 3 years	12.0	4.2	4.3	3.9	10.0	1.5	25.0		
		Interim Bench	nmark by 5 years	18.0	6.4	6.5	5.7	14.0	1.8	30.0		
		Interim Benchr	nark by 10 years	22.0	10.9	11.3	8.9	16.0	2.2	35.0		
		Final Benchm	ark by 15 years	27.2	18.2	15.0	10.4	20.0	2.8	43.9	-	
	Referen	ce Benchmark (P	re-Clearing RE)	54.3	26.0	30.5	12.9	40.0	4.0	87.8	36.5 +/- 15.1	
12.9-10.19	0.19Eucalyptus fibrosa subsp. fibrosa woodland on sedimentary rocksLeast concern sedimentary rocksNo concern at 					HRU24, I	HRU25, HRU26					
				Average Canopy Cover (%)	Average Canopy Height (m)	Average T2- T3 Canopy Cover (%)	Average T2- T3 Canopy Height (m)	Average Shrub Cover (%)	Average Shrub Height (m)	Average Ground cover (%)	Species Richness (av. +/- SD)	
		Interim Bend	hmark by 1 year	6.0	1.6	2.0	0.8	2.5	0.4	2.5		
		Interim Bench	mark by 2 years	7.0	3.0	2.9	2.7	4.0	0.7	3.0		
		Interim Bench	nmark by 3 years	9.0	4.2	4.0	3.7	5.0	1.1	4.0		
		Interim Bench	nmark by 5 years	12.0	6.3	6.0	5.2	7.0	1.3	6.0		
		Interim Benchr	nark by 10 years	15.0	10.5	9.6	7.3	9.0	1.5	8.0		
		Final Benchm	ark by 15 years	20.9	15.8	11.9	8.2	9.6	1.7	8.2	-	
	Referen	ce Benchmark (P	re-Clearing RE)	41.8	22.5	16.4	9.0	19.1	2.4	16.4	30.1 +/- 4.6	
12.9-10.4	10.4 <i>Eucalyptus racemosa</i> subsp. Least concern No concern at						HRU1, HRU3					
	racemosa woodland on sedimentary rocks			Average Canopy Cover (%)	Average Canopy Height (m)	Average T2- T3 Canopy Cover (%)	Average T2- T3 Canopy Height (m)	Average Shrub Cover (%)	Average Shrub Height (m)	Average Ground cover (%)	Species Richness (av. +/- SD)	
		interim Bend	annark by Tyear	6.0	1.6	2.0	0.8	2.5	0.6	6.0	1	

Benchmark	Benchmark Condition (where rehabilitation units are treated individually, at least 70% of height and 50% of cover values to be attained within first 15 years of commencement of rehabilitation works)												
RE Code	Name	VMA Status	Biodiversity		Habitat Rehabilitation Unit Crossing Rehabilitation Unit								
		7.0	3.0	2.5	2.7	4.0	0.9	10.0					
		9.0	4.2	3.8	3.7	5.0	1.5	15.0					
		Interim Bench	mark by 5 years	12.0	6.3	5.3	5.2	7.0	1.8	20.0			
		15.0	10.5	7.4	7.3	9.0	2.1	25.0					
		20.9	15.8	10.4	8.2	9.6	2.6	29.2	-				
Reference Benchmark (Pre-Clearing RE)				38	23.2	11.8	8.9	15.7	4.1	59.9	35.4 +/- 5.2		

Adapted from Queensland Government (2015).* No pre-defined benchmarks for this RE are provided within the RE technical descriptions (Queensland Government 2015a) and therefore, these numbers have been based on data collected in the field from previous assessments and reference sites within this RE type.

5 Monitoring methodology

The following monitoring program was implemented to capture baseline data prior to rehabilitation treatments being applied. Adaptive management strategies will be used where a rehabilitation treatment does not produce the desired result. When this occurs, the treatment will be identified and/or modified.

For this monitoring program, a minimum of two monitoring sites per rehabilitation unit is sufficient to identify any major changes and to provide a 'snap shot' of ecological conditions. Monitoring in this way will allow the ongoing collection of information to demonstrate the effectiveness of habitat rehabilitation efforts, and the frequency of monitoring activities will enable management prescriptions to be adjusted to bring about any necessary changes and corrective actions (adaptive management).

5.1 Sites

Vegetation monitoring for the 6th monitoring period occurred in 59 of 62 sampling sites.

The final location of each monitoring site within its representative rehabilitation unit was identified by GPS coordinates and direction (compass bearing). Monitoring site locations are identified in Figure 3.

Site locations have been permanently marked by two steel pickets with yellow safety caps, placed 50 m apart. The yellow safety caps were used to mark the site number and distance e.g. 0 m and 50 m. Lastly, wooden stakes mark quadrat locations at 10 m, 20 m, 30 m and 40 m along the transect.

59 sites were sampled during the 6th monitoring period, with sites 9, 15 and 94 not included in this round of monitoring due to access restrictions.

The following methodology is applied to monitoring at each of the sampled sites.

5.2 Photo point monitoring

For each site, a permanently marked photo point has been established at the first marker picket with a photograph taken towards the first wooden stake at 10 m along the relevant compass bearing. Yellow safety caps are labelled with a permanent marker identifying site number (refreshed each monitoring round). All photos were taken such that the 0 m picket was located in the bottom left hand corner of the photo.

The photos were saved with the following information recorded for each file:

- site number
- survey (i.e. baseline)
- date

5.3 Transect and quadrat monitoring

Quantitative site data, including the attributes of species richness, percentage foliage cover for the ground layer, shrub and canopy layers, canopy height, and weed cover are to be collected from field transects and quadrats established at each of the monitoring sites:

- A 50 m transect was placed between two metal pickets (0 m and 50 m).
- Quadrats were placed along the transect:
 - 50 x 10 m plot positioned at the transect start at 0 m on the right hand side of the transect.
 - 1 x 1 m subplots positioned at 0 m, 10 m, 20 m, 30 m and 40 m. Adjustments were made for each subplot if its positioning was placed over a trunk, fallen tree or roots. Locations of quadrats along transect are identified using wooden stakes such that the quadrat is consistently placed at this location during future monitoring.
- When recording data, reference height ranges were used for allocating vegetation to different strata layers according to dominant pre-clearing RE allocated for the different rehabilitation units (ORU and HRU) and crossing rehabilitation units (CRU) (Table 5).

		Pre clearing height ranges (m)									
RE Type	Canopy (T1)	Small trees (T2-T3)	Shrub layer (S1)	Ground Layer (G1)							
12.3.11	>19.1	5.1-19	1.26-5	<1.25							
12.9-10.17	>13.1	6.1-13	0.76-6	<0.75							
12.9-10.4	>14.1	6.6-14	1.25-6.5	<1.25							

 Table 5
 Example reference height ranges used for classifying RE vegetation to respective strata layers

Given the above, each monitoring site had the information collected, as detailed in (Table 6). This benchmark monitoring process has also been undertaken at 1 year, 18 months, 2 years, 2.5 years, 3 years (current monitoring period) and will continue at 6 monthly intervals until significant progress has been achieved towards RE benchmark values at which point monitoring can be reduced to annual events. Reporting from each of the monitoring events shall be provided to the Department of Environment within 4 weeks of completion of monitoring.

Table 6	Data collected at	monitoring sites
---------	-------------------	------------------

Method of collection	Data collected
50 m x 10 m quadrat (plot)	Species richness
50 m transect	Canopy species cover (% Foliage Projected Cover (FPC) and height Shrub % FPC and height)
Five 1 x 1 m quadrats (subplot)	Percentage cover in ground layer (including regenerating native canopy cohorts)

Percent Foliage Projected Cover calculation:

$$\% FPC = \frac{total \ cover \ (m)}{transect \ length \ (m)} \times 100$$

6 Results

6.1 Photo-point monitoring

Photo monitoring results are reported in the following table (Table 7), showing the variety of vegetation types and their condition. The vegetation varies from exotic grass pasture such as *Chloris gayana* and *Setaria sphacelata* with sparse native regenerating shrubs and trees, to eucalypt forest with intact structure and species composition. Note that the number of sites showing visible *Lantana camara* infestations has decreased.

Table 7 Photo monitoring images

Site 4 (24/03/2020)

Site 5 (25/03/2020)

Site 6 (23/03/2020)

Site 14 (27/05/2020)

Site 15 (21/05/2019) – not surveyed this round

Site 17 (03/06/2020)

Site 20 (03/06/2020)

NW

Site 21 (30/06/2020)

Site 35 (09/06/2020) Site 36 (09/06/2020) Site 37 (09/06/2020) 322° N38W 5724mils TRUE N59W 5351 mile 81E 1760mil 1.300 330

Site 38 (09/06/2020)

Site 39 (16/06/2020)

-027.816050° / +153.114014° ↑ 23m 13:02:07 09/06/20 43° S37E 2542mils TRUE 128 S52E 2276m 120 | 150 | | 120

Site 41 (16/06/2020)

-027 816529 / +153 115940 -027 813916" / +158 118940" 136 10.17.17 8/06/20 +00.9 174° S06E 3093mils TRUE 150

Site 42 (18/06/2020)

Site 40 (16/06/2020)

Site 52 (04/03/2020) Site 70 (04/03/2020) Site 71 (26/05/2020) ate 3, Time, Wed, 04 Mer 2020, 10.29,50 ABS oscion, ______027,007093* / +159,126042* (>10 Dir lay 2020, 08 54 42 AEST /+153.126383° (±5.0m 197° S17W 3502mils True (±1 Site 72 (27/05/2020) Site 73 (26/05/2020) Site 77 (26/03/2020)

Site 78 (26/03/2020)

Site 80 (26/03/2020)

Site 81 (04/06/2020)

Site 83 (04/06/2020)

Site 84 (04/06/2020)

Site 85 (04/06/2020)

Site 87 (16/06/2020)

Site 88 (18/06/2020)

Site 89 (27/03/2020)

Site 93 (27/03/2020)

Site 90 (27/03/2020)

Site 92 (27/03/2020)

Site 95 (19/05/2020)

N56W 5404mils TRUE

Site 96 (19/05/2020)

Site 105 (19/05/2020)

Site 116 (19/05/2020)

Site 117 (20/05/2020)

Site 126 (14/05/2020)

Site 122 (14/05/2020)

Site 125 (14/05/2020)

Site 139 (13/05/2020)

Site 140 (13/05/2020)

Site 141 (13/05/2020) - old photo, taken 06/06/2019

Site 142 (13/05/2020)

Site 146 (27/03/2020) - old photo, taken 24/05/2019

6.2 Transect and quadrat monitoring

6.2.1 Species richness

At baseline in May 2016, a total of 339 species were recorded within the 59 surveyed monitoring sites in the koala habitat areas (Habitat Area). During the 1st monitoring period a total of 313 species were recorded within 64 monitoring sites. During the 2nd monitoring period a total of 334 species were recorded within 59 monitoring sites (an increase since 1st monitoring period of 21 species). During the 3rd monitoring period a total of 310 species were recorded within 62 monitoring sites (a decrease since 2nd monitoring period of 24 species). During the 4th monitoring period, a total of 359 species were recorded in the different strata within 62 monitoring sites (an increase since 3rd monitoring period of 49 species). During the 5th monitoring period, a total of 343 species were recorded in the different strata within 61 monitoring sites (a decrease since 4th monitoring period of 16 species). During the current 6th monitoring period, a total of 304 species were recorded in the different strata within 59 monitoring period, a total of 304 species were recorded in the different strata within 59 monitoring period, a total of 304 species were recorded in the different strata within 59 monitoring period, a total of 304 species were recorded in the different strata within 59 monitoring sites (a decrease since 5th monitoring period, a total of 304 species were recorded in the different strata within 59 monitoring sites (a decrease since 5th monitoring period, a total of 304 species were recorded in the different strata within 59 monitoring sites (a decrease since 5th monitoring period, a total of 304 species were recorded in the different strata within 59 monitoring sites (a decrease since 5th monitoring period, a 59 species).

Species richness within sites ranged from 8 to 58 species, with an average of 34 species per site (4.5 species less than 5th monitoring period). The largest number of species was observed in sites 41 (Precinct 6), 8 (P1), 6 (P1), 12 (P13) and 120 (P14) (from lowest to highest in species richness), ranging between 47-58 species. This varied moderately from the 5th monitoring period, where the largest number of species was observed in sites 41 (P14), 7 (P1), 83 (P10), 12 (P13) and 9 (P13).

The lowest number of species was observed in site 77 (8 species, a decrease of 14 species recorded in the site in the 5th monitoring period) located to the south of the power easement in a section of Greenspace Corridor, within HRU16. This differs from the past three monitoring periods, where the lowest number of species was recorded at site 89. In the current monitoring period, the number species richness recorded at site 89 remained at 16 species.

Canopy tree species (T1 stratum) common across the Habitat Area were consistent with 5th monitoring period and included *Eucalyptus tereticornis, Eucalyptus siderophloia, Angophora leiocarpa, Corymbia trachyphloia, Eucalyptus resinifera* and *Eucalyptus seeana* (from highest to lower abundance). Native canopy tree species that were most rare (found only at one site) across the Habitat Area include *Angophora woodsiana, Corymbia citriodora subsp. variegata, C. tesselaris, Eucalyptus acmenoides, E. carnea, E. fibrosa subsp. fibrosa* and *Lophostemon suaveolens*, which differs slightly from the 5th monitoring period where the rarest species also included *Casuarina glauca, Corymbia intermedia, E. microcorys* and *E. racemosa*.

Small tree species (T2-T3) common across the Habitat Area only varied slightly to those recorded in the 5th monitoring period and include *Lophostemon suaveolens, Melaleuca linariifolia, Eucalyptus tereticornis, Melaleuca quinquenervia, Angophora leiocarpa* and *Corymbia intermedia* (from highest to lower abundance). There were fifteen small native tree species that were rare across the Habitat Area (found multiple sites), including *Acacia maidenii, Angophora subvelutina, Araucaria cunninghamii, Casuarina cunnnghamiana, C. glauca, Corymbia henryi, C. tesselaris, C. trachyphloia, Eucalyptus crebera, E. microcorys, E. moluccana, E. propinqua, E, racemosa, E. resinifera and <i>Melaleuca salicina*, which varied slightly from the ten rare species recorded in the 5th monitoring period.

Shrub species (S1 stratum) that were commonly observed across the Habitat Area include *Lantana camara* (exotic weed), *Alphitonia excelsa*, *Leptospermum polygalifolium*, *Acacia leiocalyx*, *A. disparrima*, *Passiflora suberosa* and *Pinus elliotti* (exotic weed) (from highest to lower abundance). A number of native species (18 species) were rare in the shrub layer within the Habitat Area and found only at one site. These were different from those that were rare in the 5th monitoring round. Species

PO Box 2959, Burleigh BC, QLD 4220 Australia Tel: +61 (0)7 55 765 568 Mob: +61(0)415 413 408 info@natura-pacific.com

that were rare in the 5th monitoring period were either absent or more widespread than the current monitoring period.

Of all the species recorded, 65 are exotic (3 more species than 5th monitoring period and 4 more than baseline). Several of these had significant representation across the Habitat Areas, being present at a large number of sites within multiple levels of strata. In the ground layer, exotic herbs and graminoids were most highly represented. This includes *Ageratum houstonianum* (32 sites; down 8), *Andropogon virginicus* (31 sites; down 5), , *Richardia brasiliensis* (24 sites; up 2), *Emilia sonchifolia* (22 sites; down 7), *Megathursus maximus* (19 sites; down 1), *Digitaria didactyla* (18 sites; no change), *Paspalum urvillei* (16 sites; down 8), *Setaria pumila* (15 sites; up 5), *Scoparia dulcis* (14 sites, down 2), and *Eragrostis tenuifolia* (13 sites; down 1). Other species that were common in previous monitoring rounds had significantly decreased for example *Axonopus compressus* (1 site; 23 less than 5th monitoring), *Passiflora suberosa* (8 sites; 11 less than 5th monitoring), *Sida cordifolia* (15 sites; down 6) and *Pinus elliottii*, (4 sites; 10 less than 5th monitoring).

6.2.2 Tree canopy cover and height (T1)

Of the sites with canopy trees present (T1 stratum), tree canopy overlapping % Foliage Projected Cover (FPC) varied from 3% to 88% cover, with average canopy cover of 32.4% (up 0.4% from 5th monitoring period). The canopy species with highest FPC cover in the T1 stratum varied slightly from those recorded in the 5th monitoring period, including *Eucalyptus tereticornis, E. siderophloia, Corymbia trachyphloia* subsp. *trachyphloia, Lophostemon suaveolens, E. moluccana* and *Angophora leiocarpa* (in order of highest to lower). The exotic tree *Pinus elliottii,* was recorded at one site, one less than the 5th monitoring period. This included site 121 (also present in 5th monitoring period).

The number of sites containing T1 canopy trees had increased since the 5th monitoring period from 29 to 35 sites. Therefore, in this monitoring round less than half of the sites (27 sites, 6 less than 5th monitoring period) did not have any canopy trees present, which is an improvement as the majority of the cover recorded was from native tree species. This is represented in Table 8, which indicates sites with no T1 layer for the current monitoring round and previous two monitoring rounds for comparison.

Site and Rehabilitation Unit	T1 Canopy trees absent 4th mon	T1 Canopy trees absent 5th mon	T1 Canopy trees absent 6th
1 (HRU1)	×		×
2 (HRU1)	×		
3 (HRU3)	×		
6 (HRU3)	×	×	×
7 (CRU13)	×	×	×
8 (CRU13)	×	×	×
9 (CRU13)	×	×	n/a
11 (CRU14)	×	×	×
12 (CRU12)	×	×	×
13 (CRU12)	×	×	×
15 (HRU4)		×	n/a
16 (HRU5)		×	
35 (HRU9)	×	×	×
36 (HRU7)			×

Table 86th Monitoring round sites with canopy absent for current and two previous monitoringrounds. Orange highlight indicates sites not surveyed in current monitoring rounds.

Site and Rehabilitation Unit	T1 Canopy trees absent 4th mon	T1 Canopy trees absent 5th mon	T1 Canopy trees absent 6th
37 (HRU7)	×	×	×
40 (HRU11)	×	×	
41 (HRU11)	×	×	
52 (HRU13)	×	×	×
70 (HRU15)	×	×	×
71 (HRU15)	×	×	×
72 (HRU15)	×	×	×
73 (HRU15)	×	×	×
78 (HRU16)		×	
80 (HRU16)	×		
81 (HRU20)			×
83 (HRU20)	×	×	×
87 (HRU18)	×	×	×
88 (HRU18)	×	×	×
89 (HRU23)	×	×	×
90 (CRU9)	×		
93 (HRU22)	×	×	×
94 (HRU22)	×	×	n/a
95 (HRU17)		×	
118 (HRU28)	×	×	×
120 (CRU8)		×	
140 (CRU8)	×	×	×
141 (CRU8)	×	×	×
142 (HRU29)		×	
146 (HRU21)	×	×	×
TOTAL	31	32	25

T1 canopy tree height varied from 12.4 m to 23 m, with the average tree height 17.4 m (up 0.5 m since 5th monitoring period). Species with high average T1 canopy height were *Corymbia tesselaris, Eucalyptus moluccana, E. siderophloia, E. tereticornis, Angophora leiocarpa* and *E. resinifera* (in order of highest to lowest average T1 canopy height), which was mostly consistent with findings in the 5th monitoring round.

6.2.3 Small tree cover and height (T2-T3)

In this monitoring period, 58 of the surveyed sites contained a small tree layer (T2 –T3 stratum), which is 3 less than the 5th monitoring period, where a small tree layer was recorded in all sites. Overlapping % FPC varied from 3% to 135%, with average cover 50.6% (up 1.1% from 5th monitoring period). The top five small tree species with high net cover in the T2-T3 layer were consistent with those recorded in the 5th monitoring period and included *Lophostemon suaveolens, Melaleuca linariifolia, E. siderophloia, Eucalyptus tereticornis* and *M. quinquenervia* (from highest to lower). *Pinus elliottii* occurrence increased from 4 sites in the 5th monitoring period to 5 sites this monitoring period, as indicated for comparison with the previous two monitoring rounds in Table 9. Small tree height varied from 5.9 m to 14.3 m high, with an average of 9.3 m (down 0.1 m from 5th monitoring period).

PO Box 2959, Burleigh BC, QLD 4220 Australia Tel: +61 (0)7 55 765 568 Mob: +61(0)415 413 408 info@natura-pacific.com www.natura-pacific.com

Site and Rehabilitation Unit	× = Pinus elliotti present in small tree layer								
	4th mon	5th mon	6th						
12 (CRU12)	×	×	×						
17 (HRU5)			×						
20 (HRU6)	×	×	×						
40 (HRU11)	×	×	×						
41 (HRU11)	×	×	×						
70 (HRU15)	×								
73 (HRU15)	×								
121 (HRU30)	×								
TOTAL	7	4	5						

Table 9Sites containing *Pinus elliotti* in the small tree layer this monitoring round and previous twomonitoring rounds

6.2.4 Shrub cover and height (S1)

Of the sites with shrubs present, overlapping % FPC varied from 1% to 75% with an average FPC of 27.2% (increased 6.7% from 5th monitoring period). Shrub species with highest net FPC in the shrub layer across sites were similar to those recorded in the 5th monitoring period *Acacia leiocalyx, Lantana camara, Leptospermum polygalifolium, Acacia disparrima* and *Lophostemon suaveolens* (in order of highest to lower average cover). Shrub height varied from 1.5 m to 9 m with an average height of 2.8 m (0.4 more than 5th monitoring period). Two sites did not have any shrubs present (same as 5th monitoring period). This included sites 118 (HRU28) and 139 (CRU7). Site 139 was also absent of shrubs in the 5th monitoring round.

6.2.5 Ground cover (G1)

Consistent with the previous three monitoring periods, all of the sites surveyed have a living ground layer, varying in average ground cover across the 5 quadrats per site from 1.2% (site 81 (HRU20), same as previous three monitoring periods, with a decrease of 1.6% since 5th monitoring round) to 62.8% (site 117 (HRU28)), different from 5th monitoring period, where the highest cover was observed at site 120 (CRU8). Average ground cover was 29.3% (down 4.7% from 5th monitoring period). Ground cover was dominated by native graminoids, a fern and a mat-rush as well as an exotic herb and gramonoid species having highest cover overall. Species varied only slightly from the 5th monitoring period and included *Imperata cylindrica* (which had a minimum of 2.5 times higher cover overall than any other species), *Andropogon virginicus* (exotic weed grass), *Leersia hexandra, Lantana camara* (exotic weed herb), *Lomandra longifolia, Cynodon dactylon, Pteridium esculentum,* and *Eragrostis brownii* (from highest to lower abundance).

The extent of regenerating *Pinus elliottii* (exotic weed tree) cover in the ground layer continued to decline, with a 56% reduction since the 5th monitoring period (decreasing from 156% to 96% FPC). While a small component may attributed to site 94 not being surveyed this monitoring round (had 32% cover of *P. elliotti* in 5th monitoring round), the result indicates that targeted removal is continuing to have a positive result. It is anticipated that the management of *P. elliottii* in the ground layer will facilitate continued decline, working towards the goal to eradicate them completely from the Yarrabilba footprint area. This approach should continue to combine efforts to manage and

PO Box 2959, Burleigh BC, QLD 4220 Australia Tel: +61 (0)7 55 765 568 Mob: +61(0)415 413 408 info@natura-pacific.com www.natura-pacific.com

reduce other exotic species including *Lantana camara* and high cover exotic grasses such as *Andropogon virginicus* and *Paspalum urvillei* within the ground-layer to support and improve the long-term regeneration habitat within these areas.

6.2.6 Weed incursion

There were a total of 55 species of weeds identified in different strata across sites (7 less than 5th monitoring period). Weeds were recorded in the ground layer at 49 sites surveyed in this monitoring period (comparatively, 10 less than 5th monitoring period).

In sites where weed ground cover was recorded, weed cover in the ground layer varied from 0.4% (sites 4 (HRU1) and 105 (HRU26)) to 42.8% (site 87 (HRU18)), with average cover 13.5% (1.7% more than 5th monitoring period). The composition of weed species in the ground layer with highest cover differed from the 5th monitoring period, though were still predominantly graminoids including *Andropogon virginicus, Lantana camara, Ageratum houstonianum, Paspalum urvillei, Sporobolus africanus* and *Paspalum scrobiculatum* (from highest to lower abundance).

<u>.</u>	Species Richness						Average Height (m)			Total Crown Cover (% overlapping cover)					Ground Cover (%)	
Site	Canopy (T1)	Sub - Canopy (T2 and T3)	Shrubs (S1)	Ground Layer (G1)	Total	Total weeds	Canopy (T1)	Sub - Canopy (T2 and T3)	Shrubs (S1)	Canopy (T1)	Sub - Canopy (T2 and T3)	Shrubs (S1)	Total Weed Crown Cover	Total Native Crown Cover	Av. Native Shrub and Ground Layer (S1-G1)	Total Weed Ground Cover
1	2.0	4.0	4.0	18.0	28.0	6.0	0	10.0	2.4	0	50.0	39.0	8.0	89.0	10.4	13.2
2	3.0	3.0	6.0	11.0	23.0	2.0	16.6	9.4	2.3	46.0	42.0	69.0	0	157.0	12.4	0
3	1.0	3.0	7.0	21.0	32.0	8.0	17.0	8.9	3.2	10.0	45.0	52.0	12.0	107.0	8.8	30.0
4	3.0	4.0	7.0	11.0	25.0	4.0	15.3	10.8	3.1	78.0	20.0	53.0	0	151.0	11.6	0.4
5	1.0	3.0	7.0	24.0	35.0	8.0	21.0	6.6	3.1	20.0	18.0	15.0	0	53.0	40.4	14.0
6	0	3.0	7.0	45.0	55.0	14.0	0	10.8	2.9	0	17.0	12.0	0	29.0	58.0	36.8
7	0	8.0	5.0	32.0	45.0	9.0	0	9.5	3.1	0	135.0	51.0	0	186.0	17.2	1.6
8	0	8.0	6.0	35.0	49.0	5.0	0	9.3	4.5	0	83.0	34.0	0	117.0	24.4	1.6
9																
11	0	6.0	3.0	28.0	37.0	10.0	0	9.6	9.0	0	33.0	51.0	0	84.0	23.6	10.0
12	0	3.0	7.0	45.0	55.0	28.0	0	11.9	2.6	0	73.0	15.0	0	88.0	38.4	12.8
13	0	5.0	3.0	29.0	37.0	15.0	0	9.1	2.5	0	36.0	22.0	11.0	58.0	35.2	8.0
14	2.0	0	8.0	19.0	29.0	5.0	21.8	7.3	2.3	71.0	10.0	32.0	6.0	113.0	30.8	12.4
15																
16	1.0	0	3.0	21.0	25.0	5.0	18.0	7.6	3.2	16.0	27.0	23.0	0	66.0	14.4	3.6
17	1.0	5.0	4.0	21.0	31.0	8.0	14.0	8.8	3.5	10.0	22.0	56.0	30.0	88.0	19.6	10.4
20	2.0	4.0	6.0	23.0	35.0	5.0	20.0	14.3	1.9	4.0	67.0	21.0	3.0	92.0	36.4	2.4
21	1.0	2.0	4.0	22.0	29.0	5.0	20.0	9.8	1.5	14.0	19.0	9.0	4.0	42.0	28.0	8.8
35	0	5.0	4.0	30.0	39.0	14.0	0	7.2	2.9	0	23.0	22.0	2.0	45.0	21.2	26.8
36	0	10.0	12.0	18.0	40.0	9.0	0	10.0	2.1	0	105.0	67.0	0	172.0	22.8	4.0
37	1.0	6.0	7.0	24.0	38.0	8.0	0	10.1	2.9	0	93.0	42.0	1.0	135.0	22.4	2.8
38	1.0	6.0	7.0	19.0	33.0	8.0	17.0	6.3	3.3	24.0	9.0	15.0	0	48.0	32.8	16.4
39	2.0	3.0	6.0	27.0	38.0	12.0	12.4	0	2.4	67.0	0	38.8	2.8	105.8	55.2	10.8
40	0	6.0	5.0	29.0	40.0	7.0	0	9.3	2.9	0	98.6	8.0	0	106.6	30.0	6.0
41	0	7.0	6.0	34.0	47.0	6.0	0	12.4	2.6	0	86.0	48.0	0	134.0	30.4	4.4
42	2.0	8.0	6.0	21.0	37.0	10.0	21.5	10.1	2.2	22.0	71.0	48.0	32.0	141.0	21.6	7.6
43	3.0	3.0	7.0	20.0	33.0	6.0	22.2	10.6	2.6	62.0	30.0	29.0	0	121.0	21.2	14.0
52	1.0	9.0	8.0	22.0	40.0	6.0	0	9.7	2.8	0	60.0	23.0	0	83.0	31.2	0
70	0	6.0	3.0	15.0	24.0	2.0	0	8.2	3.0	0	63.0	53.0	0	116.0	25.2	0
71	0	5.0	2.0	11.0	18.0	1.0	0	7.5	2.8	0	65.6	6.0	0	71.6	34.0	0
72	0	4.0	4.0	16.0	24.0	1.0	0	10.5	2.5	0	72.0	37.0	0	109.0	13.6	0
73	0	5.0	3.0	28.0	36.0	9.0	0	10.2	1.9	0	111.0	10.0	0	121.0	29.2	15.6
77	1.0	2.0	0	5.0	8.0	0.0	23.0	9.7	1.5	46.0	28.0	2.0	0	76.0	18.4	0
78	1.0	9.0	6.0	15.0	31.0	4.0	21.5	8.1	3.5	16.0	57.0	3.0	0	76.0	13.6	0
80	1.0	4.0	6.0	13.0	24.0	1.0	19.3	11.9	2.1	38.0	65.0	26.0	0	129.0	22.0	1.2
81	0	5.0	6.0	21.0	32.0	11.0	0	10.2	4.1	0	77.0	35.0	18.0	112.0	1.2	6.0
83	0	4.0	5.0	39.0	48.0	13.0	0	11.4	2.1	0	116.0	11.0	5.0	127.0	58.0	8.0
84	1.0	4.0	10.0	24.0	39.0	11.0	17.0	14.3	2.4	3.0	49.0	21.0	6.0	73.0	59.6	18.0
85	2.0	6.0	9.0	24.0	41.0	8.0	20.0	13.9	2.0	21.0	72.0	30.0	1.0	123.0	32.0	4.0

Table 10 6th Monitoring period species richness, average canopy height within the canopy (T1), sub-canopy (T2-T3) and shrub layer (S1) and Foliage Projected Cover within the canopy (T1), sub-canopy (T2-T3), shrub layer (S1) and ground layer (G1). Orange highlight indicates sites that were not surveyed in this monitoring round due to restricted access at time of sampling.

		S	Species Rich	ness			Av	erage Height (m)			Total Cro	wn Cover (% c	overlapping cover)		Ground Cover (%)	
Site	Canopy (T1)	Sub - Canopy (T2 and T3)	Shrubs (S1)	Ground Layer (G1)	Total	Total weeds	Canopy (T1)	Sub - Canopy (T2 and T3)	Shrubs (S1)	Canopy (T1)	Sub - Canopy (T2 and T3)	Shrubs (S1)	Total Weed Crown Cover	Total Native Crown Cover	Av. Native Shrub and Ground Layer (S1-G1)	Total Weed Ground Cover
87	0	5.0	3.0	31.0	39.0	13.0	0	9.7	3.3	0	81.0	14.0	0	95.0	35.2	42.8
88	0	6.0	6.0	33.0	45.0	15.0	0	10.5	2.6	0	57.0	19.0	1.0	76.0	36.8	14.8
89	0	4.0	0	17.0	21.0	7.0	0	7.4	4.8	0	27.6	2.0	0	29.6	14.0	12.4
90	1.0	4.0	2.0	17.0	24.0	4.0	14.5	6.5	3.4	8.0	17.4	26.0	24.0	51.4	31.2	26.8
92	1.0	2.0	5.0	19.0	27.0	11.0	15.8	9.7	3.2	22.0	39.0	29.0	14.0	90.0	37.2	6.0
93	0	4.0	5.0	16.0	25.0	8.0	0	7.5	2.2	0	12.0	26.0	26.0	38.0	54.4	21.2
94																
95	1.0	3.0	3.0	21.0	28.0	11.0	17.0	6.7	1.8	5.0	40.0	6.0	4.0	51.0	13.2	14.4
96	4.0	1.0	6.0	27.0	38.0	11.0	16.3	10.6	2.5	24.0	57.0	16.0	0	97.0	24.4	7.2
105	4.0	4.0	11.0	20.0	39.0	3.0	14.7	9.8	1.7	58.0	27.0	22.0	0	107.0	25.2	0.4
116	2.0	2.0	4.0	31.0	39.0	9.0	16.6	9.9	2.0	34.0	69.0	9.0	8.0	112.0	62.0	23.2
117	1.0	3.0	4.0	43.0	51.0	19.0	15.0	8.6	1.5	4.0	61.0	1.0	0	66.0	62.8	22.4
118	0	3.0	3.0	31.0	37.0	13.0	0	9.0	0	0	103.0	0	0	103.0	30.4	13.6
120	4.0	5.0	7.0	42.0	58.0	15.0	16.5	8.8	1.5	36.0	41.0	2.0	0	79.0	59.6	20.8
121	3.0	3.0	6.0	15.0	27.0	5.0	16.4	6.0	2.3	65.0	4.0	49.0	0	118.0	12.4	0
122	5.0	2.0	7.0	13.0	27.0	6.0	15.5	9.5	2.7	42.0	19.0	75.0	0	136.0	29.6	0
125	2.0	4.0	6.0	13.0	25.0	2.0	14.9	5.9	3.2	62.0	7.4	45.0	0	114.4	8.8	0
126	4.0	4.0	10.0	21.0	39.0	4.0	16.6	9.9	1.7	88.0	25.0	6.0	0	119.0	17.6	1.2
139	1.0	1.0	3.0	19.0	24.0	12.0	16.0	6.5	0	14.0	3.0	0	0	17.0	53.6	21.6
140	0	4.0	4.0	31.0	39.0	11.0	0	8.7	3.0	0	15.0	1.0	0	16.0	34.8	41.6
141	0	3.0	6.0	19.0	28.0	10.0	0	8.0	2.7	0	66.0	10.0	0	76.0	16.8	16.8
142	1.0	2.0	1.0	18.0	22.0	8.0	13.0	9.0	2.8	8.0	95.0	3.0	0	106.0	39.6	1.6
146	0	2.0	4.0	17.0	23.0	7.0	0	7.5	3.7	0	21.0	60.0	32.0	81.0	22.4	32.0
6 th Mon.	1.9*	4.4*	5.5*	23.3*	34.0*	8.4*	17.4*	9.3*	2.8*	32.4*	50.6*	27.2*	11.4*	93.6*	28.6*	13.5*
5 th Mon.	2.1*	3.3*	4.4*	30.2*	38.5*	9.5*	16.9*	9.4*	2.4*	32.0*	49.5*	20.5*	6.2*	85.6*	34.0*	11.8*
4 th Mon.	1.9*	3.8*	3.8*	32.8*	40.8*	10.6*	16.8*	9.2*	2.5*	28.7*	46.0*	20.2*	9.0*	81.5*	31.8*	11.5*
3 rd Mon.	4.2*	3.1*	3.0*	28*	36.0*	7.6*	17. 6*	8.9*	2.5*	25.2*	42.4*	5*	2.4*	56.8*	32.3*	9.5*
2 nd Mon.	2.0*	4.7*	3.7*	24.2*	34.6*	7.7*	15.9*	9.9*	4.5*	35.2*	56.8*	6.4*	0	70.8**	31.1*	12.5*
1 st Mon.	2.6*	3.6*	5.9*	25.6*	37.8*	16.7*	16.5*	10.2*	3.9*	33*	19.4*	4.2*	6.4**	79**	34*	14.4*
Baseline	1.8*	2.3*	5.1*	20.5*	29.6*	6.5*	17.2*	10.2*	2.8*	45*	20.2*	6.2*	16**	84.8**	41.1*	10*

* Note 1: Total average values for 6th Monitoring period (6th Mon.), 5th Monitoring period (5th Mon.), 4th Monitoring period (4th Mon.) and 3rd Monitoring period (3rd Mon.) are calculated across sites, only including sites where each respective strata was present and not including sites where they were absent (value = 0). ** Note 2: Total average values for 2nd Monitoring period (2nd Mon.), 1st Monitoring period (1st Mon.) and Baseline for Total Weed Crown Cover and Total Native Crown Cover are calculated across all sites, irrespective of presence/absence.

6.3 Normalised Difference Vegetation Index (NDVI) monitoring

During the 6th monitoring period, the normal process of carrying out an additional NDVI assessment to determine the health and condition of the native vegetation across the Fauna Corridors, Greenspace and Environmental Protection Zones could not be conducted due to restrictions around the impacts of COVID-19. Therefore the NDVI section of this report is omitted. For previous results of this assessment for Koala Habitat Areas, please refer to the 5th monitoring period report. NDVI remote sensing will commence once COVID-19 impact-related restrictions have ceased.

7 Discussion

An assessment of site species richness (SR) and structure was undertaken to determine the 6th monitoring period condition against the benchmark, 2nd, 3rd, 4th and 5th monitoring periods and baseline values (Table 10). In this monitoring period, IMO-3 year target, 97% (2% less than previous monitoring period) of the surveyed sites met this minimum benchmark for at least four of the benchmark parameters. It should be noted that while results may have been attributed to seasonal variation and response to management, comparisons may be skewed by the variation in number of sites surveyed and slight changes to the methodology. It is therefore expected that there would be some non natural 'decline / decrease' between monitoring periods. Three sites met the benchmark of IMO-3 or greater for all categories, including sites 38, 85 and 105. This is an improvement to the previous monitoring period, where none of the sites were at level IMO-3 across all categories. The sites with the lowest number of benchmarks met in this monitoring period varied slightly from the previous monitoring period and included sites 81 (HRU20), 89 (HRU23) and 118 (HRU28). These sites had only met four benchmark values across parameters. The majority of sites (97%) meet the Final benchmark for at least one benchmark parameter (consistent with previous monitoring period) and 33% of sites (same as 5th monitoring period) meet the Final benchmark for at least four (50%) of the benchmark variables. There was a continued increase in the number of sites meeting consistently high benchmarks (5 or more variables with FMO-15 or FINAL), with 29 sites (49%, 5% more than 5th monitoring period, which had 27 sites meeting this standard), including sites 2, 3, 4, 5, 6, 7, 8, 11, 12, 14, 20, 21, 36, 37, 41, 42, 43, 52, 70, 72, 77, 80, 83, 84, 85, 87, 88, 105 and 125. Seventeen of these sites are located in Greenspace Corridors (sites 2, 3, 4, 5, 6, 7, 8, 11, 12, 14, 20, 21, 41, 42, 52, 105 and 125), with 13 sites (sites 36, 37, 42, 43, 70, 72, 77, 80, 83, 84, 85, 87, 88) located in Fauna Corridors (Figure 3).

For species richness, there has been a significant decrease in total diversity with 21 sites (35% of sites, 16% less than 5th monitoring period) reaching Final benchmark (10 less sites than 5th monitoring period). This decrease, however, may have been due to changes in methodology, with a more rapid assessment method adopted, in addition to seasonal variation. In terms of regional ecosystems, RE12.9-10.4 declined, with none of the five sites in this ecosystem meeting the Final benchmark for species richness (two less than previous monitoring). Within RE 12.9-10.17, 13 out of 24 sites (54%, 29% less than 5th monitoring period) now meet the final benchmark, whilst in RE12.3.11, 8 out of 32 sites (25%, 3% less than 5th monitoring period) meet the final benchmark for SR.

The number of native species recorded within sites is improving, with most sites containing at least 60% natives in the species composition, with the exception of two sites (sites 12 and 139), which also contained lowest species richness in the 5th monitoring period, with improvements to sites 87 (now 67% native SR) and 146 (now 70% native SR). The four sites with the highest proportion of native species compared to weeds contained \geq 94% native species and included sites 77, 72, 80 and 71 (in order from highest to lower).

The number of sites that had higher than acceptable cover of exotic weeds (>5% cover) decreased from 34 to 33 sites (1% decrease since 5th monitoring period). Sites with the highest % cover of weeds varied slightly from the 5th monitoring period and include sites 87, 140, 146, 6 and 3 (from highest to lower % cover). **Of these, sites 87, 140 and 146 are amongst those considered highest priority for rehabilitation** as they have the lowest number of benchmarks achieved, whilst sites 3 and 6 are overall doing well, with at least 6 benchmarks of IMO-3 or greater across categories achieved.

To continue improving the number of sites meeting this important benchmark, **recommendations for** future rehabilitation efforts include continued assisted natural regeneration with weed control across all sites that fail to meet the benchmark, with particular focus on targeting sites with

PO Box 2959, Burleigh BC, QLD 4220 Australia Tel: +61 (0)7 55 765 568 Mob: +61(0)415 413 408 info@natura-pacific.com

the highest % weed cover (see above) that are infiltrated with the most dominant weed species *Andropogon virginicus* (exotic grass), *Lantana camara* (exotic herb), *Ageratum houstonianum* (exotic herb), *Paspalum urvillei* (exotic grass), *Sporobolus africanus* (exotic grass) and *Paspalum scrobiculatum* (exotic grass) and *Pinus elliottii* (exotic tree) saplings as well as continued efforts to eliminate sub mature and mature *Pinus elliottii* (recorded in the T2 and/or T1 layers at sites 12, 17, 20, 40, 41 and 121 – consistent with previous monitoring period). Management may also include continued infill planting with a suite of species represented in the preclearing Regional Ecosystem species lists for each rehabilitation unit being planted where possible as part of an assisted regeneration effort. Continued specific management of *P. ellotti* is recommended at the sites mentioned above, in addition to 17 other sites containing juvenile *P. elliottii* regrowth in the shrub and ground layers 1-3, 7, 11, 36, 37, 39, 70, 84, 87, 88, 92, 93, 120, 122 and 146. Considering that most of these sites have already achieved high benchmarks across multiple categories, they are not included in the top priority sites for rehabilitation. It is suggested that further management of *P. elliottii* within these areas is done strategically over time with staged removal to reduce invasion of the ground-layer by exotic species.

There was a continued trend of improvement observed within benchmark categories across sites. A total of 28 sites (47%) met a benchmark for canopy tree cover (same as 5th monitoring period), with 89% of these meeting the IMO-3 benchmark or greater. 28 sites (47%) met a benchmark for canopy tree height (down from 32 sites (54%) in 5th monitoring period), with 100% of these meeting the IMO-10 benchmark or greater. 58 sites (98%) meet a benchmark for small tree cover (2% less than 5th monitoring period), with 96% of these meeting the IMO-3 benchmark or greater. The same number of sites (98%) meet a benchmark for small tree height (2% less than 5th monitoring period), with 97% of these meeting the IMO-3 benchmark or greater. For shrub cover, 52 sites (88%) met a benchmark (down from 55 sites (90%) in 5th monitoring period), with 90% of these meeting the IMO-3 benchmark or greater. For shrub height, 56 sites (95%) met a benchmark (down from 59 sites (96%) in 5th monitoring period), with 79% of these meeting the IMO-3 benchmark (down from 59 sites (96%) in 5th monitoring period), with 79% of these meeting the IMO-3 benchmark (down 1% from 5th monitoring period), with 79% of these meeting the IMO-3 benchmark (down 1% from 5th monitoring period), with 79% of these meeting the IMO-3 benchmark (down 1% from 5th monitoring period), with 79% of these meeting the IMO-3 benchmark (down 1% from 5th monitoring period), with 79% of these meeting the IMO-3 benchmark or greater and 23 sites (38%) meet the <5% cover benchmark for weed cover of the ground-layer (down from 27 sites (44%) 5^h monitoring period).

Considering that shrub and ground cover variables continued to have the lowest number of sites meeting the IMO-3 benchmark minimum, it is recommended that rehabilitation efforts continue to incorporate assisted natural regeneration in combination with targeted weed control to open up more space for ground cover species to regenerate naturally. Opportunities for complementary infill planting may also be assessed and carried out if deemed necessary. Top priority sites to target for ground cover improvement to IMO-3 standard include those that also fail to meet the weed cover benchmark, which are sites 89 (HRU23) and 95 (HRU17) (same as previous monitoring period), as well as sites 1 (HRU1), 3 (HRU3), 17 (HRU5), 96 (HRU17), 141 (HRU29) and 146 (HRU21). In addition to these priority sites, his assessment reveals that the overall average cover of weeds in the ground layer continues to increase, therefore rehabilitation needs to continue widespread weed removal in the ground layer across a large number of sites that do not yet fall within the acceptable benchmark limit of <5% total weed cover in the ground layer (refer to table 8).

When comparing new results to baseline surveys in terms of trends across all sites, average canopy tree cover remains the same while there is a slight increase in results for canopy height. As discussed in previous reports, this decrease in cover has been attributed to the removal of *Pinus elliotti* trees which comprised a significant part of the canopy layer in baseline surveys. Small tree cover continued to increase slightly to 50.6% (30.4% more than baseline), while average height has continued to decrease slightly. Shrub cover has also increased significantly to 27.2 (6.7% more than baseline) and shrub height has also increased slightly. Total ground-cover had a continued trend of decline, and the

PO Box 2959, Burleigh BC, QLD 4220 Australia Tel: +61 (0)7 55 765 568 Mob: +61(0)415 413 408 info@natura-pacific.com www.natura-pacific.com

proportion of weeds has increased slightly overall since baseline, which may be attributed to slight changes in methodology in the 1st monitoring period and also some seasonal variation. Overall average native species richness has decreased, which may be due to use of more rapid field assessment methodology as mentioned above.

Looking forward, effective management will ensure that all sites meet the IMO-3 benchmark values before rolling over to the IMO-5 year benchmark target in August 2021. The high prevalence of weeds across the 36 sites that do not yet meet the benchmark has likely caused competition with regenerating native species and may impact on native species richness, ground cover and shrub cover, considering that exotic species often have a competitive advantage with rapid growth and shorter time to seed maturity. It is recognised that increases in weed incursion may be a result of edge effects and the increasing isolation of HRUs as clearing of the surrounding land-use matrix has intensified for pastoral and arable agriculture as well as new clearing in the development precincts. Primary weed species needing to be targeted are highlighted in paragraph five of the discussion. Additional species should be assessed in-situ and may include Baccharis halimifolia (exotic shrub), Setaria sphacelata (exotic grass), Cenchrus ciliaris (exotic grass), Ambrosia artemisifolia (native shrub), Conyza bonariensis (exotic herb) and Megathyrsus maximus (exotic grass).

A lower number of sites (24 (41%) down from 32 (52%) in 5th monitoring period) are lacking a canopy (T1) layer. There is also a continued decline in the number of sites that fail to meet any benchmarks for canopy height (27 (46%), down from 29 (47%) in 5th monitoring period). The number of sites that fail to meet any benchmarks for T1 cover decreased to 21 sites (36%), down from 31 (51%) in 5th monitoring period. A large number of these sites (42) had maintained the 'same' (S) status of 'failure to meet a benchmark', while a smaller number of sites had declined (D) in canopy cover (sites 17, 36, 81, 84, 85, 96 and 118) or canopy height (1, 4, 78, 81 and 118) since the 5th monitoring period. **As** per previous recommendations, considering that the canopy strata has a much lower number of sites meeting a benchmark for height and canopy when compared to other layers of strata, these sites should be included in those for priority natural assisted regeneration, with particular attention during future monitoring periods to determine if canopy layers are recovering and if the height and composition of the small tree layer is increasing in a way that would indicate growth of canopy species and future recruitment into the canopy layer.

There are 22 sites (16 more than 5th monitoring period) that consistently met lower than the IMO-3 target benchmarks (IMO-1, IMO-2, or no benchmark), in four or more categories across canopy, shrub and ground-layers. These sites are regarded as being in the poorest condition in terms of lowest benchmark values for species richness, height and cover and they include sites 1 (HRU1), 9 (CRU13), 11 (CRU14), 12 and 13 (CRU12), 15 (HRU4), 35 (HRU9), 73 (HRU15), 81 (HRU20), 87 and 88 (HRU18), 89 (HRU23), 93 and 94 (HRU22), 95 (HRU17), 117 and 118 (HRU28), 139 and 140 (CRU7), 141 and 142 (HRU29) and 146 (HRU21).

In summary, there are a number of sites considered amongst those of highest priority requiring prompt management actions to improve benchmark conditions to a minimum of IMO-3 across all variables in preparation for moving forward to the new IMO-5 target in August 2021. This is to be achieved primarily through assisted natural regeneration, weed management including continued felling of *Pinus elliottii*, reduction in weed cover and improving the ground layer at a number sites. Using combined information from the above discussion, based on a combination of benchmark achievement and weed prevalence, there are 7 top priority rehabilitation units most urgently requiring management actions for improving multiple benchmarks (predominantly species richness, canopy, ground cover and weed cover), including HRU20 (site 81), HRU18 (site 87, same as 5th monitoring), HRU23 (site 89, same as 5th monitoring), CRU7 (site 140, same as 5th monitoring), HRU17 (site 95, same as 5th monitoring), HRU29 (site 141) and HRU21

(site146) (in order of highest to lowest priority). These sites should also be targeted for overall ground cover improvement to enhance benchmark achievement between sites

A further 3 rehabilitation units are recommended specifically for weed removal as they are in the top 5 sites with highest weed cover or contain *P. elliotti* to be removed, site 1 (HRU1), 3 (HRU3) and 17 (HRU5). Top weeds for targeted management are *Andropogon virginicus* (exotic grass), *Lantana camara* (exotic herb), *Ageratum houstonianum* (exotic herb), *Paspalum urvillei* (exotic grass), *Sporobolus africanus* (exotic grass) and *Paspalum scrobiculatum* (exotic grass) and *Pinus elliottii* (exotic tree).

Table 10 can be used to determine other sites to be earmarked for improving species richness, ground cover and weed control if possible following management of top priority sites.

Table 11 6th Monitoring period benchmark values for species richness, canopy height within the canopy (T1), sub-canopy (T2-T3) and shrub layer (S1) and cover within the canopy (T1), sub-canopy (T2-T3), shrub layer (S1) and ground layer (G1) as well as indicative weed cover benchmarks. Orange indicates sites that were not surveyed this round due to restricted access at time of sampling

Site	Rehabilitatio n Unit	Pre-Clearing Regional Ecosystem	Native Species Richness	Canopy Cover (T1)	Canopy Height (T1)	Small Tree Height (T2-T3)	Small Tree Cover (T2-T3)	Shrub Cover (S1)	Shrub Height (S1)	Native Ground Cover (G1)	Weed Cover (<5%)
1	HRU1	12.9-10.4/12.9-10.12	X (S)	X (S)	X (D)	FINAL (I)	FINAL (S)	FINAL (S)	IMO-10 (I)	IMO-2 (D)	N (S)
2	HRU1	12.9-10.4/12.9-10.12	X (D)	FINAL (I)	FMO-15 (I)	FINAL (S)	FINAL (S)	FINAL (S)	IMO-10 (D)	IMO-2 (D)	Y (S)
3	HRU3	12.9-10.4/12.9-10.12/12.9-10.2	X (D)	IMO-3 (S)	FMO-15 (S)	FINAL (S)	FINAL (S)	FINAL (S)	FMO-15 (S)	IMO-1 (D)	N (S)
4	HRU1	12.9-10.4/12.9-10.12	X (S)	FINAL (I)	IMO-10 (D)	FINAL (S)	FINAL (S)	FINAL (S)	FMO-15 (I)	IMO-2 (D)	Y (S)
5	HRU3	12.9-10.4/12.9-10.12/12.9-10.2	X (S)	IMO-10 (S)	FMO-15 (S)	IMO-5 (S)	FINAL (S)	FMO-15 (D)	FMO-15 (I)	FMO-15 (S)	N (S)
6	HRU3	12.3.11/12.3.7	FINAL (I)	X (S)	X (S)	FMO-15 (D)	FMO-15 (I)	FMO-15 (I)	FINAL (S)	FINAL (S)	N (S)
7	CRU13	12.3.11/12.3.7	FINAL (S)	X (S)	X (S)	FMO-15 (S)	FINAL (S)	FINAL (S)	FINAL (S)	FINAL (I)	Y (S)
8	CRU13	12.3.11/12.3.7	FINAL (S)	X (S)	X (S)	IMO-10 (I)	FINAL (S)	FINAL (I)	FINAL (S)	FINAL (S)	Y (S)
9	CRU13	12.3.11/12.3.7									
11	CRU14	12.3.11/12.3.7	X (S)	X (S)	X (S)	FMO-15 (D)	FINAL (I)	FINAL (S)	FINAL (S)	FINAL (S)	N (D)
12	CRU12	12.3.11/12.3.6/12.3.7	X (S)	X (S)	X (S)	FINAL (S)	FINAL (S)	FMO-15 (I)	FINAL (S)	FINAL (S)	N (S)
13	CRU12	12.3.11/12.3.6/12.3.8	X (S)	X (S)	X (S)	IMO-10 (S)	FINAL (S)	FINAL (I)	FMO-15 (S)	FINAL (S)	N (S)
14	HRU4	12.3.11/12.3.6/12.3.7	х	FINAL	FMO-15	IMO-5	IMO-5	FINAL	FMO-15	FINAL	N
15	HRU4	12.3.11/12.3.6/12.3.7									
16	HRU5	12.9-10.17/12.9-10.2	X (D)	IMO-3 (I)	X (S)	IMO-5 (D)	FMO-15 (D)	FMO-15 (S)	FMO-15 (S)	IMO-1 (D)	Y (S)
17	HRU5	12.9-10.17/12.9-10.2	FINAL (S)	IMO-2 (D)	IMO-10 (S)	IMO-5 (S)	FMO-15 (D)	FINAL (I)	FMO-15 (S)	IMO-1 (D)	N (S)
20	HRU6	12.3.11/12.3.6/12.3.7	X (S)	X (S)	FMO-15 (S)	FINAL (S)	FINAL (S)	FMO-15 (I)	FMO-15 (S)	FINAL (S)	Y (S)
21	HRU6	12.3.11/12.3.6/12.3.7	X (D)	IMO-3 (S)	FMO-15 (S)	FMO-15 (S)	FMO-15 (S)	IMO-10 (S)	IMO-10 (I)	FINAL (S)	N (S)
35	HRU9	12.3.11/12.3.6/12.3.7	X (S)	X (S)	X (S)	IMO-5 (S)	FMO-15 (S)	FINAL (I)	FINAL (S)	FINAL (S)	N (S)
36	HRU7	12.3.11/12.3.6/12.3.7	X (S)	X (D)	X (D)	FMO-15 (S)	FINAL (S)	FINAL (S)	FMO-15 (I)	FINAL (S)	Y (S)
37	HRU7	12.3.11/12.3.6/12.3.7	X (D)	X (S)	X (S)	FMO-15 (D)	FINAL (S)	FINAL (I)	FINAL (S)	FINAL (S)	Y (S)
38	HRU10	12.9-10.17/12.9-10.2	FINAL (S)	IMO-10 (S)	IMO-10 (S)	IMO-5 (S)	IMO-5 (S)	IMO-5 (I)	FMO-15 (I)	IMO-5 (D)	N (D)
39	HRU10	12.9-10.17/12.9-10.2	FINAL (S)	FINAL (I)	IMO-10 (S)	X (D)	X (D)	FMO-15 (I)	IMO-10 (I)	FMO-15 (I)	N (S)
40	HRU11	12.3.11/12.3.6/12.3.7	FINAL (I)	X (S)	X (S)	IMO-10 (D)	FINAL (S)	IMO-5 (I)	FINAL (I)	FINAL (S)	N (D)

Site	Rehabilitatio n Unit	Pre-Clearing Regional Ecosystem	Native Species Richness	Canopy Cover (T1)	Canopy Height (T1)	Small Tree Height (T2-T3)	Small Tree Cover (T2-T3)	Shrub Cover (S1)	Shrub Height (S1)	Native Ground Cover (G1)	Weed Cover (<5%)
41	HRU11	12.3.11/12.3.6/12.3.7	FINAL (S)	X (S)	X (S)	FINAL (S)	FINAL (S)	FINAL (I)	FMO-15 (S)	FINAL (S)	Y (S)
42	HRU8	12.3.11/12.3.6/12.3.7	X (S)	IMO-10 (I)	FMO-15 (S)	FMO-15 (I)	FINAL (S)	FINAL (S)	FMO-15 (D)	FINAL (S)	N (S)
43	HRU8	12.3.11/12.3.6/12.3.7	X (S)	FINAL (S)	FMO-15 (S)	FMO-15 (S)	FINAL (I)	FINAL (I)	FMO-15 (I)	FINAL (S)	N (S)
52	HRU13	12.3.11/12.3.6/12.3.7	FINAL (I)	X (S)	X (S)	FMO-15 (S)	FINAL (S)	FINAL (I)	FINAL (I)	FINAL (S)	Y (S)
70	HRU15	12.3.11/12.3.6/12.3.7	X (D)	X (S)	X (S)	IMO-10 (S)	FINAL (S)	FINAL (S)	FINAL (S)	FINAL (S)	Y (S)
71	HRU15	12.3.11/12.3.6/12.3.7	X (S)	X (S)	X (S)	IMO-5 (I)	FINAL (I)	IMO-3 (I)	FINAL (I)	FINAL (S)	Y (S)
72	HRU15	12.3.11/12.3.6/12.3.7	X (S)	X (S)	X (S)	FMO-15 (S)	FINAL (S)	FINAL (S)	FMO-15 (S)	FMO-15 (D)	Y (S)
73	HRU15	12.3.11/12.3.6/12.3.7	X (D)	X (S)	X (S)	FMO-15 (I)	FINAL (S)	IMO-10 (I)	FMO-15 (S)	FINAL (S)	N (S)
77	HRU16	12.3.11	X (S)	FMO-15 (S)	FMO-15 (S)	FMO-15 (S)	FINAL (S)	IMO-1 (I)	IMO-10 (I)	FINAL (S)	Y (S)
78	HRU16	12.3.11	X (S)	IMO-3 (I)	X (D)	IMO-5 (D)	FINAL (S)	IMO-1 (S)	FINAL (I)	FMO-15 (S)	Y (S)
80	CRU4	12.3.11	X (S)	FMO-15 (S)	FMO-15 (S)	FINAL (S)	FINAL (S)	FINAL (I)	FMO-15 (S)	FINAL (S)	Y (S)
81	HRU20	12.9-10.17/12.9-10.2	X (D)	X (D)	X (D)	IMO-10 (I)	FINAL (S)	FMO-15 (S)	FINAL (I)	X (S)	N (S)
83	HRU20	12.3.11/12.3.6/12.3.7	FINAL (S)	X (S)	X (S)	FINAL (S)	FINAL (S)	FMO-15 (I)	FMO-15 (S)	FINAL (S)	N (S)
84	HRU19	12.3.11/12.3.6/12.3.7	X (S)	X (D)	FMO-15 (S)	FINAL (S)	FINAL (I)	FMO-15 (S)	FMO-15 (D)	FINAL (S)	N (D)
85	CRU10	12.3.11/12.3.6/12.3.7	FINAL (I)	IMO-5 (D)	FMO-15 (S)	FINAL (S)	FINAL (S)	FINAL (S)	FMO-15 (S)	FINAL (S)	Y (I)
87	HRU18	12.3.11/12.3.6/12.3.7	X (S)	X (S)	X (S)	FMO-15 (S)	FINAL (S)	FMO-15 (I)	FINAL (I)	FINAL (S)	N (S)
88	HRU18	12.3.11/12.3.6/12.3.7	X (S)	X (S)	X (S)	FMO-15 (S)	FINAL (S)	FMO-15 (S)	FMO-15 (D)	FINAL (S)	N (S)
89	HRU23	12.9-10.17/12.9-10.2	X (S)	X (S)	X (S)	IMO-5 (S)	FMO-15 (S)	X (D)	FINAL (I)	IMO-1 (S)	N (S)
90	CRU9	12.9-10.17/12.9-10.2	X (D)	IMO-1 (S)	IMO-10 (S)	IMO-5 (S)	FMO-15 (S)	FMO-15 (D)	FMO-15 (I)	IMO-5 (S)	N (S)
92	HRU22	12.9-10.17/12.9-10.2	X (S)	IMO-10 (S)	IMO-10 (S)	IMO-10 (S)	FINAL (S)	FMO-15 (I)	FMO-15 (I)	IMO-10 (D)	N (I)
93	HRU22	12.3.11/12.3.6/12.3.7	X (S)	X (S)	X (S)	IMO-5 (S)	IMO-10 (S)	FINAL (I)	FMO-15 (S)	FINAL (S)	N (S)
94	HRU22	12.3.11/12.3.6/12.3.7									
95	HRU17	12.9-10.17/12.9-10.2	X (S)	X (S)	X (S)	IMO-5 (S)	FINAL (S)	IMO-1 (D)	IMO-5 (D)	IMO-1 (D)	N (S)
96	HRU17	12.9-10.17/12.9-10.2	FINAL (S)	IMO-10 (D)	IMO-10 (S)	FMO-15 (I)	FINAL (S)	IMO-10 (D)	IMO-10 (S)	IMO-2 (S)	N (S)
105	HRU26	12.9-10.17/12.9-10.19	FINAL (S)	FINAL (I)	IMO-10 (I)	IMO-10 (I)	FMO-15 (I)	FMO-15 (I)	IMO-5 (I)	IMO-3 (I)	Y (I)
116	HRU28	12.9-10.17/12.9-10.2	FINAL (S)	FMO-15 (S)	IMO-10 (S)	IMO-10 (S)	FINAL (S)	IMO-2 (S)	IMO-5 (I)	FMO-15 (S)	N (S)

Site	Rehabilitatio n Unit	Pre-Clearing Regional Ecosystem	Native Species Richness	Canopy Cover (T1)	Canopy Height (T1)	Small Tree Height (T2-T3)	Small Tree Cover (T2-T3)	Shrub Cover (S1)	Shrub Height (S1)	Native Ground Cover (G1)	Weed Cover (<5%)
117	HRU28	12.9-10.17/12.9-10.2	FINAL (S)	X (S)	IMO-10 (S)	IMO-5 (S)	FINAL (S)	X (S)	X (S)	FMO-15 (S)	N (S)
118	HRU28	12.9-10.17/12.9-10.2	FINAL (S)	X (D)	X (D)	IMO-10 (S)	FINAL (S)	X (D)	X (D)	IMO-5 (D)	N (S)
120	CRU8	12.9-10.17/12.9-10.2	FINAL (S)	FMO-15 (S)	IMO-10 (S)	IMO-5 (S)	FINAL (S)	X (S)	IMO-3 (I)	FMO-15 (S)	N (S)
121	HRU30	12.9-10.17/12.9-10.2	FINAL (S)	FINAL (S)	IMO-10 (S)	IMO-5 (S)	IMO-2 (S)	FINAL (I)	IMO-10 (I)	IMO-1 (D)	Y (S)
122	HRU30	12.9-10.17/12.9-10.2	X (D)	FMO-15 (S)	IMO-10 (S)	IMO-10 (I)	FMO-15 (I)	FINAL (S)	IMO-10 (S)	IMO-3 (I)	Y (D)
125	HRU31	12.9-10.17/12.9-10.2	FINAL (S)	FINAL (S)	IMO-10 (S)	IMO-5 (S)	IMO-5 (S)	FINAL (S)	FMO-15 (I)	X (D)	Y (S)
126	HRU31	12.9-10.17/12.9-10.2	FINAL (S)	FINAL (S)	IMO-10 (S)	IMO-10 (I)	FMO-15 (S)	IMO-1 (I)	IMO-5 (S)	IMO-1 (D)	Y (I)
139	CRU7	12.9-10.17/12.9-10.2	X (S)	IMO-3 (S)	IMO-10 (S)	IMO-5 (S)	IMO-2 (I)	X (S)	X (S)	FMO-15 (S)	N (S)
140	CRU7	12.9-10.17/12.9-10.2	FINAL (S)	X (S)	X (S)	IMO-5 (S)	FMO-15 (I)	X (D)	FMO-15 (I)	IMO-5 (D)	N (S)
141	HRU29	12.9-10.17/12.9-10.2	X (D)	X (S)	X (S)	IMO-5 (S)	FINAL (S)	IMO-3 (S)	IMO-10 (D)	IMO-1 (D)	N (S)
142	HRU29	12.9-10.17/12.9-10.2	X (D)	IMO-1 (I)	X (S)	IMO-10 (D)	FINAL (S)	X (S)	IMO-10 (D)	IMO-10 (D)	Y (I)
146	HRU21	12.9-10.17/12.9-10.2	X (D)	X (S)	X (S)	IMO-5 (S)	FMO-15 (S)	FINAL (I)	FMO-15 (I)	IMO-2 (D)	N (S)
Total meeting a benchmark			21	28	28	58	58	52	56	57	23
Total meeting a benchmark (5 th mon.)			31	29	32	61	61	55	59	60	28
Total meeting a benchmark (4 th mon.)			34	26	31	62	62	53	57	61	23
Total meeting a benchmark (3 rd mon.)			28	15	25	62	56	19	55	61	28
Total meeting a benchmark (2 nd mon.)			3	19	21	57	57	12	29	57	20
Total meeting a benchmark (baseline survey)			65	45	49	60	61	47	62	65	12
Total improving (since 5 th mon.)			4	8	2	9	10	27	25	4	8
		Total declining (since 5 th mon.)	14	8	6	6	11	9	9	17	5
		Total same (since 5 th mon.)	42	44	52	44	39	23	25	37	46
		Overall trend	<u> </u>	=	<u> </u>	=	=	2	2	<u>≤</u>	=
Total sites surveyed (excl. removed) = 59				1	1	1	I	1	1	l	1

Note 1: Benchmark values - IMO-1 = year 1; IMO-2 = year 2, IMO-3 = year 3, IMO-4 = year 4, IMO-5 = year 5, IMO-10 = year 10, FMO-15 = year 15, FINAL = Final benchmark condition, X = does not meet any benchmark i.e. poorer than IMO-1 year condition. Note 2: D = Decrease, S = Same, I = Increase in all values

8 Bibliography

Agricultural Management Company (2011) Interim Land Management Plan, Yarrabilba Stage 2: Business Plan. Agricultural Management Company, for Lendlease

Austecology (2012) Koala Management Plan. Austecology for Lendlease

Austecology (2015) Offset Management Plan. Austecology for Lendlease

Batianoff, G.N. and Butler, D.W. (2002) Assessment of invasive naturalised plants of southeast Queensland. *Plant Protection Quarterly* **17**:1

Big Scrub Rainforest Landcare Group (2000) *Common Weeds of Northern NSW Rainforest: A practical manual on their identification and control.* Big Scrub Rainforest Landcare Group, Bangalow, NSW

Big Scrub Rainforest Landcare Group (2005) *Subtropical Rainforest Restoration 2nd Edition*. Big Scrub Rainforest Landcare Group, Bangalow, NSW

Brack, C.L. and Wood, G.B. (1996) *Tree Growth Increment*. Australian National University, Fenner School

Url: http://fennerschool-associated.anu.edu.au/mensuration/BrackandWood1998/T_GROWTH.HTM. (Accessed 24/01/2015)

Brisbane City Council (2010) *Ecological Assessment Guidelines – Appendix* 3. Url: http://www.brisbane.qld.gov.au/documents/building_development/pages%20from%20285065_bcc_ec o_guidelines_final.part1.pdf (Accessed 01/06/2015)

Buchanan, R.A. (1999) *Bush Regeneration: Recovering Australian Landscapes*. Open Training and Education Network

Buchanan, R.A. (2009) *Restoring Natural Areas: Open Training and Education Network*. Local College New South Wales and Department of Industry and Investment

Bushland Protection Systems (2012) *Draft Pre-Development Bushfire Mitigation Concept for the Yarrabilba Site: A Complete Town, A Better Outcome.* Bushland Protection Systems for Lendlease

Department of Infrastructure, Planning and Natural Resources (2004) *Wildlife Corridors*. Url: http://www.environment.nsw.gov.au/resources/nature/landholderNotes15WildlifeCorridors.pdf (Accessed 03/06/2016)

Design Flow (2012) Yarrabilba Stormwater Infrastructure Master Plan. Design Flow, for Lendlease

Dight, G.A., Huggins, J.A., Lucy, M.J. and Zerner, G.R. (2003) *Wild Plants of Greater Brisbane*. Queensland Museum

Environmental Protection Agency (2003) Regional Ecosystem Map: Based on 2003 Landsat TM Imagery. Queensland Government, Brisbane

Franks, A. and Franks, S. (2003) *Nest Boxes for Wildlife, A Practical Guide*. Blooming Books, Melbourne, Australia

Lendlease (2011) Yarrabilba Draft Land Management Plan. Lendlease

Logan River Branch SGAP (Qld Region) Inc. (2008) *Mangroves to Mountains Revised Edition: A field guide to the native plants of South-east Queensland*. Logan River Branch, Browns Plains Queensland

McDonald, M.C. (1996) *Resilience and the Restoration of Damaged Plant Communities: A discussion focusing on Australian Plant Communities*. PhD. Dissertation. University of Western Sydney, Hawkesbury, NSW

McDonald, R. C., Isbell, R. F., Speight., J. G., Walker J. and Hopkins M. S. (2005) *Australian Soil and Land Survey Handbook*. Department of Agriculture, Fisheries and Forestry, Canberra

Natura Consulting (2011) Fauna Corridor Infrastructure Master Plan. Natura Consulting for Lendlease

New South Wales Department of Primary Industries (2011) *Noxious and Environmental Weed Control Handbook: A guide to weed control in non-crop, aquatic and bushland situations, Fifth Edition.* DPI NSW

Parsons, W.T. and Cuthbertson, E.G. (2001) *Noxious Weeds of Australia, Second Edition*. CSIRO Publishing

Primary Industries Department Queensland (2003) *Weeds of Southern Queensland.* 2nd Edition. Department of Primary Industries Brisbane

Queensland Herbarium (2015a) *Mapping regional ecosystems*. Queensland Government. Url: https://www.qld.gov.au/environment/plants-animals/plants/herbarium/mapping-ecosystems/ (Accessed 06/12/2014)

Queensland Government (2015b) *Pre-clearing Broad Vegetation Groups of Queensland*. Queensland Government, Department of Science, Information Technology, Innovation and the Arts. URL: https://data.qld.gov.au/dataset/pre-clearing-broad-vegetation-groups-ofqueensland/resource/1d49665c-cbc0-4935-a5b5-380c162ff42b (Accessed: 06/12/2014)

Ross, Y. (1998) *Hollow Bearing Trees in Permanent Plots in Southeast Queensland*. Department of Natural Resources, Natural Sciences Precinct, Indooroopilly, Qld. DNRQ980146/

Transport and Main Roads (TMR) (2002) *Fauna Sensitive Road Design. Volume 1, Past and Existing Practices.* Queensland Department of Main Roads, Planning, Design and Environment Division

Urban Ecology Australia (2006) *Wildlife Corridors*. Url: http://www.urbanecology.org.au/topics/wildlifecorridors.html_(Accessed 03/06/2016)

Urban Land Development Authority (2011a) *Draft ULDA Guideline 14 – Environment and Natural Resources Sustainability*. Urban Land Development Authority

Urban Land Development Authority (2011b) ULDA Guideline 17 – Remnant Vegetation and Koala Habitat Obligations in Greater Flagstone and Yarrabilba UDA's

van der Ree, R., Clarkson, D.T., Holland, K., Gulle, N. and Budden M. (2008) *Review of Mitigation Measures used to deal with the Issue of Habitat Fragmentation by Major Linear Infrastructure*. Department of Environment, Water, Heritage and the Arts

Yurrah (2009) Yarrabilba Vegetation Management Plan. Yurrah, for Lendlease